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1. Pose estimation on fingerspelling data in the
wild

To illustrate the difficulty of using pose es-
timation for our fingerspelling recognition task,
we ran an off-the-shelf pose estimator, OpenPose
(https://github.com/CMU-Perceptual-
Computing-Lab/openpose), on our fingerspelling
data. Example results are shown in Figure 1. OpenPose is a
person keypoint detection library including a hand keypoint
estimation module. Due to the visual challenges in our
fingerspelling data, signing hands are not detected in some
frames. Furthermore, the hand pose is often not correctly
estimated even if the signing hand is detected successfully.

2. Face detector

The model and training data for the face detector we use
have been described in the main paper. Here we provide

additional detail on how we apply the face detector in the
face ROI and face scale setups, in particular on how the
ROI is extraced and scaled.

To save computation, the face detector is run on one in
every five frames per sequence, interpolating the detections
for the remaining 80% of the frames. If only one face is
detected, we take the average of all bounding boxes for the
whole sequence. In cases where multiple faces are detected,
we first find a smooth “face tube” by successively taking the
bounding box in the next frame that has the highest IoU with
the face bounding box in the current frame. For every tube,
a motionness score is defined as the average value of optical
flow within a surrounding region (3× size of bounding box).
Finally the tube with the highest score is selected and again
the box is averaged over the whole sequence. In cases where
face detection fails, we use the mean of all face bounding
boxes detected in all images of the same size in the training
set. We empirically observe that the failure case where no

Figure 1: Examples of pose estimation failure on fingerspelling data from ChicagoFSWild.
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face is detected is rare (∼ 0.5% of the training set).
In the face ROI setting, a large region centered on the

detected face bounding box is cropped and resized to serve
as input. This is because the signing hand(s) are spatially
close to the face during fingerspelling. Specifically we
crop a region centered on the bounding box which is 3 times
larger. The ROI is resized with a ratio of 224

max(wroi,hroi)

and then padded on the short side to make a squared target
image of size 224× 224.

In the face scale setting, we only scale the original frame
based on the size of the face bounding box to avoid artifacts
arising from cropping. The purpose of scaling is to make the
scale of hands in different input sequences roughly uniform.
As our data are from videos with a large variety of view-
points and resolutions, the scale of the hands varies over
a wide range. For instance the proportion of the hand in
an image from a webcam video can be several times larger
than that in an image from a third-person view. Specifically
we pre-set a base size b (36 in our experiments) for the face
bounding box. Input images of original size WI ×HI with
a bounding box of size wI × hI are rescaled with a ratio of

b
max(wI ,hI)

. If the image area is larger than 224× 224 after
rescaling, we further rescale by a ratio of α to ensure the re-
sulting image has at most 224×224 resolution due to mem-
ory constraints. α is multiplied in the iterative zooming-in
for that input sequence.

3. Signing hand detector

We adopt the signing hand detector used in [4], made
available by the authors. Unlike a general hand detector, the
objective here is to detect the signing hand.1 The detector is
based on Faster R-CNN [3] and takes both the RGB image
frame and corresponding optical flow as input. VGG-16 [5]
is used as the backbone architecture. Unlike a general object
detector, only the first 9 layers of VGG-16 are preserved and
the stride of the network is reduced to 4. This is done so as
to capture more fine details, since the signing hand tends to
be small relative to the frame size. To enforce sequence-
level smoothness, framewise bounding boxes are linked to
a “signing tube”. The linking process takes into account the
IoU between bounding boxes in consecutive frames. More
details on the hand detector can be found in [4].

Apart from the original hand detector used in [4], we
also experimented with variants including using all convo-
lutional layers of VGG-16 and concatenating feature maps
in different layers to make it multi-scale as in [2, 1]. We did
not observe any improvement from these variants, which
may be because those more complex networks suffer from
overfitting due to the limited amount of hand annotations.
In addition, we notice that the majority of errors made

1A large proportion of the video frames collected in the wild contain
more than one hand.

by the hand detector consist of confusion between signing
and non-signing hands instead of between hands and back-
ground objects. Typical errors can be seen in Figure 2. Thus
it is difficult to mitigate the issue of data scarcity by simply
augmenting our training data with external hand datasets
from other domains.

4. Experiments on zooming vs. enlarging, prior
vs. no prior

We ran the following experiment to show the benefits
of distraction removal obtained by the zooming employed
in iterative attention, in addition to the increase in resolu-
tion. In particular, we compare the accuracy of zooming at
ratio R and enlarging the input images by 1

R in the face
ROI setting. For this experiment, R is set to 0.93, corre-
sponding to the zooming ratio we use in the first iteration.
Comparison on smaller ratios is not feasible due to GPU
memory constraints (12GB in our case). For both zoom-
ing and enlarging, the resolution of the signing hand is the
same. As can be seen from Table 1, zooming outperforms
enlarging. When the prior map is used, the gap between the
two approaches is small. This is mainly because distracting
portions can be filtered via the motion-based prior in our
model. The gain of zooming becomes much larger when we
do not use optical flow as a complementary prior, demon-
strating the benefit of distraction removal in our approach.
Additionally, the motion-based prior has a negligible effect
on the accuracy of our approach in this setting.

R = 0.93 Zooming Enlarging
with prior 39.6 39.3
without prior 39.8 38.1

Table 1: Accuracy comparison between zooming and en-
larging in the face ROI setting.

5. Experiments on robustness to face detection
errors

A face detector is used in two experimental setups: face
ROI and face scale. To see how robust the model is to face
detection errors, we add noise to the bounding box output
by the face detector. Specifically, two types of noise were
separately added: size noise and position noise. For size
noise, we perturb the actual face detection boxes by mul-
tiplying the width and height of the box by factors each
drawn from N (1, σ2

s). For position noise, we add values
drawn from N (0, σ2

p) to the center coordinates of the face
detection boxes. Note that position noise only affects the
face ROI experiments. We vary σs, σp and show results in
Table 2, 3. Overall we find that position noise has a smaller
impact on accuracy compared to size noise. The face scale



setup, where no cropping is done in pre-processing, is more
robust to size noise than the face ROI setup is. Adding size
noise brings a small improvement in this setting, which pro-
vides evidence that the face detector we use is not perfect.

σs IoU Face ROI Face Scale
0.0 1.000 45.6 42.9
0.1 0.858 45.2 42.7
0.2 0.741 44.7 43.3
0.3 0.641 44.3 44.0
0.4 0.556 42.6 43.3

Table 2: Impact of size noise on letter accuracy for face
ROI and face scale setups. IoU is measured between the
perturbed and original bounding boxes.

σp IoU Face ROI
0.0 1.000 45.6
0.5 0.780 45.2
1.0 0.621 45.0
1.5 0.499 44.6
2.0 0.402 44.2

Table 3: Impact of position noise on letter accuracy for
the face ROI setup. Note the face scale is not affected by
position noise. IoU is measured between the perturbed and
original bounding boxes.

6. Iterative attention vs. off-the-shelf signing
hand detector

Iterative attention serves as an implicitly learned “de-
tector” of signing hands. We compare the performance of
this detector with a separately trained signing hand detec-
tor here. The signing hand detector is the one used in [4]
and has been described in the previous section. We convert
the iterative attention ROI to an explicit detector through
the following steps: take the input image of the last iter-
ation, backtrack to the original image frame to get its co-
ordinates, and use these coordinates as the bounding box.
We take a model trained in the face ROI setting and com-
pare it with an off-the-shelf detector. Figure 2 shows ex-
ample sequences from the ChicagoFSWild dev set, where
our approach successfully finds signing sequences while the
off-the-shelf detector fails. For quantitative evaluation, we
take the dev set of hand annotation data in ChicagoFSWild,
which includes 233 image frames from 19 sequences, and
remove all frames with two signing hands. That amounts
to 200 image frames in total. We compute average IoU and
miss rate between the target bounding box and ground truth.
The miss rate is defined as 1-intersection/ground-truth area.
As the two detectors have different IoU’s and miss rates, for

ease of comparison we resize the bounding box of the off-
the-shelf detector to keep its miss rate consistent with that of
the iterative-attention detector. As is shown in Table 4, our
detector almost doubles the average IoU of the off-the-shelf
detector at the same miss rate. Though numerical differ-
ences between IoU’s may be exaggerated due to the small
amount of evaluation data, the effectiveness of our approach
for localization of signing hands can also be inferred from
improvements in recognition accuracy.

Off-the-shelf [4] Iterative-Attn
Avg IoU 0.213 0.443
Avg Miss Rate 0.158 0.158

Table 4: Comparison of IoU between an off-the-shelf sign-
ing hand detector and a detector produced by iterative atten-
tion.
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Figure 2: Signing hands detected by the iterative attention detector vs. the off-the-shelf signing hand detector [4], taken from
the ChicagoFSWild dev set. In each example, the upper row is from off-the-shelf detector and the lower row is from iterative
attention. Signing hands are successfully detected by iterative attention in all cases.
Errors made by the off-the-shelf detector: In (1) and (2), bounding boxes are switched between signing and non-signing
hand; in (3), the detected signing hand is incomplete; in (4), the non-signing hand is mis-detected as the signing hand. Note
that sequence-level smoothing has already been incorporated in the off-the-shelf detector.


