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Figure A: Genogram of the 3D point clouds in Fig. 6 of main paper. The green and purple points have the same ancestors
and split at the last layer. The red and blue point sets have entirely different ancestors except for the root.

.

1. Illustration of the Proposed Tree-structured Graph Convolution Network (treeGCN)
The proposed loop term with K supports is illustrated by double line arrows in Fig. A. Our loop term uses K parameters,
while conventional GCNs [2] use only single parameter for the loop term. By using K parameters in loop term, our method
enhances representation power for describing various typologies of 3D point clouds. This term is applied for each vertex of
every layer after branching, as shown in (5) of the main paper.
The proposed ancestor term is illustrated by dotted line arrows in Fig. A. Conventional GCNs that use first-order ap-
proximation to extract the information from neighboring vertices have two problems for 3d point cloud generation. First,
conventional GCNs even with a lot of layers have insufficient representation power for describing various 3d point clouds.
The methods in [3, 4] attempted to solve the first problem by using fully-connected networks, but its representation power
was still limited. Second, conventional GCNs require adjacency information as a prior knowledge, which is not available in
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unsupervised 3d point clouds generation problems. The method in [4] used k-nearest neighbor techniques to solve the second
problem, but it suffered from high computational complexity. The proposed ancestor term uses ancestor information within
a tree, which boosts representation power and enables efficient computation. Our method uses ancestor vertices within a tree
instead of neighbor vertices to extract features of the next layer, as shown in Fig. A. This term is applied for each vertex on
every layer after branching, as shown in (6) of the main paper.
The proposed branching is illustrated by normal lines in Fig. A. Intuitively, we can know that the branching performs
well on tree-like structures in Fig. A. There can be several different branching strategies, which are compared in the following
section.

2. Ablation Study on Different Branching Strategies
As an ablation study on hyper-parameter settings, different branching strategies were compared. Fig. B shows the conver-

gences of the FPD of our tree-GAN according to different branching strategies. As shown in Fig. B, the proposed tree-GAN is
insensitive to different branching strategies, while each strategy is still useful for generating accurate point clouds in terms of
the FPD. In experiments of the main paper, we used a branching degree {1, 2, 2, 2, 2, 2, 64} for seven layers of the proposed
generator (i.e., treeGCN). For the discriminator, we used the same network proposed by [1]. However, in this experiment, we
used a similar but larger discriminator {3, 64, 128, 256, 512, 1024} than that of [1]. Note that different branching strategies
do not significantly change convergence dynamics, but can affect point cloud distributions of semantic parts. Fig. C shows
that rg degree of initial root determines output point distributions, which is consistent with mathematical properties of the
proposed treeGCN (Section 5).

Figure B: Convergence curves according to different branching strategies. The branching strategies with different degrees
{1, 2, 2, 2, 2, 2, 64}, {1, 2, 4, 16, 4, 2, 2}, and {1, 32, 4, 2, 2, 2, 2} are denoted by red, blue, and green curves, respectively.

Figure C: Unsupervised 3D point clouds generated by our tree-GAN with different branching strategies. (e.g.,
{1, 2, 2, 2, 2, 2, 64}, {1, 2, 4, 16, 4, 2, 2}, and {1, 32, 4, 2, 2, 2, 2} from left to right). Different branching strategies affect
output point distributions of semantic parts.
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