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1. N-way K-shot Segmentation


Experiments conducted on PASCAL-5i similar to Sha-
ban et. al. [7] setup evaluate 1-way segmentation with the
new class as the foreground to be predicted. We conduct
further experiments on Labelled Faces in the Wild (LFW)
dataset [5] to perform 2-way segmentation. The dataset pro-
vides images for labelled faces annotated with parts which
include 2 semantic part classes. We compare against ini-
tializing the weights of the convolutional layer responsible
for classification randomly, and with naive fine-tuning on
the random weights. Evaluation is performed on the 1-shot
and 5-shot cases as shown in Table 1. Our proposed method
outperforms the naive finetuning baseline with a significant
margin of 24.6% and 23.4% in the 1-shot case and 5-shot
case respectively. Performing fine-tuning with our masked
proxies scheme leads to a boost in the mIoU with 3.0% in
the 1-shot and 4.4% in the 5-shot. The flexibility of the
proposed few-shot method allows its coupling with back-
propagation which proves to be useful in the parts seg-
mentation. Nonetheless, using the masked proxies solely
without fine-tuning outperforms naive fine-tuning with ran-
domly initialized weights. Figure 1 shows qualitative eval-
uation on LFW dataset for the 1-shot 2-way segmentation
scenario.


Table 1: Quantative results on LFW [5] segmentation
dataset. Rnd: Indicates the use of random weights in the
final layer. MP: indicates imprinting the final layer weights
using the masked proxies. FT: indicates fine-tuning.


Method 1-Shot 5-shot
Rnd 15.0 -
MP 48.4 53.8
Rnd + FT 20.4 27.5
MP + FT 50.2 58.7


2. Iterative Adaptation
Iterative refinement based on the pseudo-labels from the


query image is conducted to improve the segmentation ac-
curacy. The use of the initial masked proxies based on the
support set provides an initial class signature that can seg-
ment the query image. In order to improve the segmenta-
tion accuracy we use the pseudo-labels based on the initial
probability map for the query. An iterative adaptation is
performed to the background class weights while imprint-
ing the new class weights based on the masked proxies. The
iterative refinement module boosts the results further by 3%
in the 1-shot case for the mean on all folds as shown in Table
2.


Table 2: Quantative results on PASCAL-5i segmentation
dataset 1-shot scenario. AMP: Without iterative adaptation.
Iterative-AMP: The iterative adaptation performed on the
query.


Method AMP Iterative-AMP
Fold 0 36.2 41.9
Fold 1 49.0 50.2
Fold 2 43.9 46.7
Fold 3 33.3 34.7
Mean 40.6 43.4


3. Multi-resolution Imprinting
In this section we further explain the multi-resolution im-


printing method applied to the original FCN8s architecture.
Since we replace pooling layers with dilated convolution
to increase the receptive field and maintain the resolution.
Our multi-resolution imprinting scheme in this architecture
utilizes input from different dilation factors of 1, 2, and 4
respectively. The output feature maps are convolved by
our masked proxies to produce the final heat maps. The
heatmaps from different resolution are further combined us-
ing summation to provide the output probability map. Fig-
ure 2 shows the multi-resolution imprinting performed on
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Figure 1: Output predictions on LFW dataset [5] using our proposed method without fine-tuning. (a,b) support set label-
image pair. (c,d) query label-image pair. (e) our prediction.
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Figure 2: Multi-reoslution Imprinting of Dilated-FCN8s ar-
chitecture.


the FCN8s architecture.


4. Video Object Segmentation


In this section we elaborate on the online adaptation ex-
periments that were conducted for video object segmenta-
tion. Our base 2-stream wide Resnet model included dilated
convolution at the final layers to incorporate contextual in-
formation. However the last convolutional layer that is be-
ing imprinted had a high dilation rate of factor 12. Such
high dilation rate proved to be problematic to adaptively
imprint the weights for both foreground and background
classes. Figure 3 shows the effect of dilation rate on the out-
put feature maps. When the output feature maps are masked
with the label, it clearly shows that high dilation rate can
lead to incorporating features from the main object of in-
terest in the background class. One solution would be to
use dilation factor 1 in the final classification layer. How-
ever our experiments show that lower dilation rate would
degrade the performance of the segmentation network by
5%. Therefore, masked proxies were used to adaptively im-
print the foreground class only in the model with dilation
rate 12, in order not to corrupt the background class.


We further conducted experiments on DAVIS-17 [6] with
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Figure 3: Effect of Dilation Rate on one of the Feature maps used as input to the masked average pooling procedure. (a)
Dilation Rate of 12. (b) Dilation Rate of 1.


Figure 4: Qualitative Analysis on FBMS dataset. Top: AMP (ours). Bottom: LVO [9].


multiple objects to evaluate instance mask propagation.
Since our base network was mainly designed for single ob-
ject segmentation, we rather used Mask R-CNN [2] as our
base network for multiple objects segmentation. Where the
masked proxy for each instance is imprinted and used to la-
bel further track instances. It signifies the flexibility of our
method to work with different architectures. Table 3 shows
the results for our proposed masked proxies. Although we
have only used the masked proxies in the ROI Align in order
to imprint the fully connected layers responsible for classi-
fication solely. Further improvement gains can be achieved
by adaptively imprinting the mask prediction layers as well,
which is left for our future work. The baselines we have
reported are from the recently published work by Wang et.
al. [13]. Since our method does not train on DAVIS-2017
training set we compare against the methods that are not
fully supervised as reported in [13]. Our method operates
in an end-to-end manner without post-processing steps that
other methods would need to handle multiple objects. Yet it
outperforms the video colorization method that was based


Table 3: Quantitative Analysis on DAVIS-17 [6]


Method F-mean
Identity 23.6
FlowNet2 [3] 25.2
Transitive Inv [12] 26.8
Deep Cluster [1] 33.2
Video Colorization [11] 32.7
Cycle Consistency [13] 39.8
Ours 33.4


on 3D ResNet [11], and the self supervised method in tran-
sitive invariance work [12].


We show qualitative analysis on DAVIS and FBMS
datasets, as they were not included in the main manuscript
due to space constraints. Figure 4 shows our results on
FBMS in comparison to LVO [10]. Figure 5 shows our re-
sults on DAVIS without post processing in comparison to
other unsupervised video object segmentation methods. It
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Figure 5: Qualitative Analysis on DAVIS dataset. (a) AMP (ours). (b) MotAdapt [8]. (c) LVO [9]. (d) FSeg [4].


shows qualitatively how our method outperforms the state
of the art on both datasets.


Figure 6: Plotting standard deviation as shaded area for 5
multiple runs.


5. iPASCAL Experiments
Finally for iPASCAL experiments the main manuscript


reported the averaged mIoU over multiple runs but without
explicitly showing the variation among the different runs.
Fig. 6 shows the standard deviation shaded for the best per-
forming AMP and the baseline. It ensures on the benefit


added from the use of our adaptive method.
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