
Appendix

Fig. 6: Now, all humor aside, if a GAN can remove diseases completely from images, it will offer an ideal method for segmenting all
diseases, an ambitious goal that has yet to be achieved. Nevertheless, our method is still of great clinical significance in computer-aided
diagnosis for medical imaging, because it can be used for disease detection and localization by subtracting the generated healthy image
from the original image to reveal diseased regions, that is, detection and localization by removal. More importantly, our Fixed-Point
GAN is trained using only image-level annotation. It is much easier to obtain image-level annotation than lesion-level annotation, because
a large number of diseased and healthy images can be collected from PACS (picture archiving and communication systems), and labeled
at the image level by analyzing their radiological reports through NLP (natural language processing). With the availability of large well-
organized databases of medical images and their corresponding radiological reports in the future, we envision that Fixed-Point GAN will
be able to detect and localize diseases more accurately—and eventually to segment diseases—using only image-level annotation. [The
cartoon was provided courtesy of Karen Glasbergen with permission for adaptation and modification]

All figures and images (including those in the main paper) better viewed on-line in color and magnified for details



Eyeglass Detection and Localization by Removal Using Only Image-Level Annotation of the CelebA Dataset

Fig. 7: [Continued from Fig. 2] Additional test results in eyeglass detection and localization by removal. The difference map (Column
3 for StarGan; Column 6 for Fixed-Point GAN) shows the absolute difference between the input (Column 1) and output (Column 2 for
StarGAN; Column 5 for Fixed-Point GAN). Applying the k-means clustering algorithm on the difference map yields a localization map,
which is then superimposed on the original image (Column 4 for StarGAN; Column 7 for Fixed-Point GAN), showing both StarGAN and
Fixed-Point GAN attempt to remove eyeglasses. However, the former leaves noticeable white “inks” along eyeglass frames (Rows 1 and
4, Column 2), while our method better preserves the face color. Removing sunglasses (Rows 5–9) has proven to be challenging: both
methods suffer from partial removal and artifacts. Nevertheless, Fixed-Point GAN tends to recover the face under the glasses and frames,
but StarGAN only changes regions around the frames. More importantly, our method can “insert” eyes at proper positions, as revealed in
the difference maps (Rows 5–9, Column 6), while StarGAN can hardly do so. To better visualize the subtle changes for negative samples
(Column 8), instead of the absolute difference, we show the difference directly, where the gray color (i.e., 0) means “no change”. In this
way, it can be observed more easily that StarGAN does some unnecessary small changes on hair (Rows 7 and 9, Column 10) and eyes
(Rows 7 and 10, Column 10), while Fixed-Point GAN generates smooth gray images (i.e., close to 0 everywhere; Column 12). Please
note that the CelebA Dataset currently does not have ground truth on the location and segmentation of glasses; therefore, a quantitative
performance evaluation of eyeglass localization cannot be conducted. However, our quantitative performance evaluations of brain lesion
localization and pulmonary embolism localization are included in Sec. 4.



Multi-Domain Image-to-Image Translation

Fig. 8: [Continued from Fig. 1] More test results in multi-domain image-to-image translation on CelebA dataset. Visually, Fixed-Point
GAN outperforms StarGAN: Fixed-Point GAN (Columns 7-11) better preserves the background (Rows 1, 3, 4, 6, 8, and 9), face color
(Rows 2–7), and facial features (Rows 7 and 9), whereas StarGAN (Columns 2-6) makes unnecessary changes. Furthermore, for same-
domain translation, StarGAN introduces noticeable artifacts (outlined in red), while Fixed-Point GAN can leave all the details intact
(outlined in green). It is worthy noting that the hair color of the facial image in the last input row (i.e., Row 9, Column 1) belongs to
Domain gray hair, which is not included in the training phase. As can be seen, Fixed-Point GAN successfully translates the input
image to target domains by changing the unseen hair color to desired colors and maintaining the original hair color (gray) in hair-color-
unrelated translations (Row 9, Columns 10–11). However, StarGAN produces unnatural images with artifacts (Row 9, Columns 2–4) and
inconsistent white hair colors (Row 9, Columns 5–6). This example shows that Fixed-Point GAN outperforms StarGAN in generalization.



Brain Lesion Detection and Localization by Removal Using Only Image-Level Annotation

Fig. 9: [Continued from Fig. 2] Brain lesion detection and localization tested on additional positive samples (i.e. brain images with lesions;
Column 1) and negative samples (i.e. brain images without lesions; Column 8). Fixed-Point GAN achieves superior detection performance,
benefiting from the cleaner difference maps of negative samples (Column 12), while StarGAN highlights the brain regions in all cases,
thereby rendering the difference maps of positive and negative samples indistinguishable (comparing Column 3 with Column 10). Although
both methods fail to remove lesions completely, our method focuses on the lesion regions, and consequently, it produces higher localization
accuracy. In contrast, the StarGAN localization map (Column 4) is very noisy and unsuitable for lesion localization. These comparisons
demonstrate the superiority of Fixed-Point GAN in lesion detection and localization. For quantitative performance evaluations, please refer
to Fig. 4 and Sec. 4.2.



Pulmonary Embolism Detection and Localization by Removal Using Only Image-Level Annotation

Fig. 10: [Continued from Fig. 2] Pulmonary Embolism (PE) detection and localization (longitudinal view) tested on additional positive
samples (i.e. images with PEs; Column 1) and negative samples (i.e. images without PEs; Column 8). PE is a blood clot that creates
blockage (appearing dark and centered within the image) in pulmonary arteries (which appear white). The current candidate generator (e.g.
[18]) produces many false positive results (negative samples) during localization; therefore, our goal in this application is to reduce false
positives through StarGAN and Fixed-Point GAN. Compared with StarGAN, the difference maps of negative samples from Fixed-Point
GAN is clean and easy to be separated from the difference maps of positive samples, yielding better detection performance. For quantitative
performance evaluations, please refer to Fig. 5 and Sec. 4.3.



Fig. 11: Pulmonary Embolism (PE) detection and localization (longitudinal view). Notice the images are from the same candidates as
Fig. 10 but the view direction is orthogonal to the angle used in Fig. 10.



Fig. 12: Pulmonary Embolism (PE) detection and localization (cross-sectional view). Notice the images are from the same candidates as
Fig. 10 but the orientation is cross-sectional.



Localization Using Class Activation Maps (CAMs)

Fig. 13: [Continued from Fig. 2] Additional test results of localization using class activation maps (CAMs). CAMs for localizing glasses,
brain lesion, and PE are obtained from ResNet-50 classifiers trained with corresponding datasets. Localization using CAMs is not as
precise as Fixed-Point GAN, as discussed in Sec. 4.2.



Qualitative Results of f-AnoGAN and VA-GAN for Brain Lesion Detection

Fig. 14: [Continued from Fig. 2] In spite of learning healthy images only, f-AnoGAN [24] performs competitively on image-level detection
task (see Fig. 4a), however, noisy difference maps impede its localization power (see Fig. 4b). On the other hand, VA-GAN [4] fails to
preserve anatomical structures when trained with unpaired images, thus violates our Req. 2 and renders unsuitable for our purpose.

Qualitative Results of f-AnoGAN on the PE Dataset

Fig. 15: As discussed in Sec. 4.3, f-AnoGAN [24] fails to produce good quality images for the PE dataset, resulting in noisy difference
maps. Hence, performs miserably on detection and localization tasks for the PE dataset.



Dataset Processing Details

Brain Lesion Detection and Localization with Image-Level Annotation: BRATS 2013 consists of synthetic and real
images, where each of them is further divided into high-grade gliomas (HG) and low-grade gliomas (LG). There are 25
patients with both synthetic HG and LG images and 20 patients with real HG and 10 patients with real LG images. For each
patient, FLAIR, T1, T2, and post-Gadolinium T1 magnetic resonance (MR) image sequences are available. To ease
the analysis, we keep the input features consistent by using only one MR imaging sequence (FLAIR) for all patients in both
the HG and LG categories, resulting in a total of 9,050 synthetic MR slices and 5,633 real MR slices. We further pre-process
the dataset by removing all slices that are either blank or have very little brain information. Finally, we randomly select
40 patients with 5,827 slices for training and 10 patients with 1,461 slices for testing from synthetic MRI images. For the
experiments on real MRI images, we randomly select 24 patients with 3,044 slices for training and 6 patients with 418 slices
for testing. During training, we set aside one batch of the random samples from the training dataset for validation. We pad
the slices to 300×300 and then center-crop to 256×256, ensuring that the brain regions appear in the center of the images.
Each pixel in the dataset is assigned one of the five possible labels: 1 for non-brain, non-tumor, necrosis, cyst, hemorrhage;
2 for surrounding edema; 3 for non-enhancing tumor; 4 for enhancing tumor core; and 0 for everything else. We assign an
MR slice to the healthy domain if all contained pixels are labeled as 0; otherwise, the MR slice is assigned to the diseased
domain.

Pulmonary Embolism Detection and Localiza-tion with Image-Level Annotation: We utilize a database consisting of
121 computed tomography pulmonary angiography (CTPA) scans with a total of 326 emboli. The dataset is pre-processed as
suggested in [38, 31, 30]. A candidate generator [18] is first applied to generate a set of PE candidates, and then by comparing
against the ground truth, the PE candidates are labeled as PE or non-PE. Finally, a 2D patch of size 15×15mm is extracted
around each PE candidate according to a vessel-aligned image representation [29]. As a result, PE appears at the center of the
PE images. The extracted images are rescaled to 128×128. The dataset is divided at the patient-level into a training set with
434 PE images (199 unique PEs) and 3,406 non-PE images, and a test set with 253 PE images (127 unique PEs) and 2,162
non-PE images. To enrich the training set, rotation-based data augmentation is applied for both PE and non-PE images.



Implementation Details

Image-Level Detection (AUC) Lesion-Level Loc. Sensitivity at 1 False Positive
Dataset StarGAN w/ Delta w/ Fixed-Point Translation w/ Both StarGAN w/ Fixed-Point Translation w/ Both
BRATS 0.4611 0.5246 0.9980 0.9831 13.6% 81.2% 84.5%
PE 0.8832 0.8603 0.9216 0.9668 88.9% 94.4% 97.2%

Tab. 4: Ablation study of the generator’s configuration on brain lesion (BRATS 2013) and pulmonary embolism (PE) detection. Selected
combinations are in bold. The columns “w/Delta”, “w/Fixed-Point Translation”, and “w/Both” mean StarGAN trained with only delta
map, only fixed-point translation learning, and both of them combined, respectively. The empirical results show that the performance gain
is largely due to fixed-point translation learning—the contribution by the delta map is minor and application-dependent.

We have revised adversarial loss (Eq. 1) based on the Wasserstein GAN [2] objective by adding a gradient penalty [10] to
stabilize the training, which is defined as

Ladv =Ex[Dreal/fake(x)]−
∑

c∈{cx,cy}

Ex,c[Dreal/fake(G(x, c))]− λgp Ex̂[(||Ox̂Dreal/fake(x̂)||2 − 1)
2
] , (8)

Here, x̂ is uniformly sampled along a straight line between a pair of a real and a fake image. The gradient penalty
coefficient (λgp) is set to 10 for all experiments. Values for λdomain and λcyc, are set at 1 and 10, respectively, for all
experiments. λid is set to 10 for CelebA, 0.1 for BRATS 2013, and 1 for PE dataset. 200K iteration is found to be sufficient
for CelebA and the PE dataset, whereas BRATS 2013 requires 300K iteration for generating good quality images. To facilitate
a fair comparison, we use the same generator and discriminator architectures as the public implementation of StarGAN. All
models are trained using the Adam optimizer with learning rate 1e−4 for both the generator and discriminator across all
experiments.

Following [4], we slightly change the architecture of the generator to predict a residual (delta) map rather than the de-
sired image directly. Specifically, the generator’s output is computed by adding the delta map to the input image, followed
by the application of a tanh activation function, tanh(G(x, c) + x). Our ablation study, summarized in Tab. 4, shows
the disease detection and localization performance of StarGAN (baseline approach), and the incremental performance im-
provement using delta map learning, fixed-point translation learning, and the two approaches combined. We find that the
major improvement over StarGAN comes from fixed-point translation learning, but the combined approach, for most cases,
provides enhanced performance compared to each individual approach (see Tab. 4). We therefore use the combination of
delta map learning and fixed-point translation learning in our proposed Fixed-Point GAN, noting that the major improvement
over StarGAN is due to the proposed fixed-point translation learning scheme. The implementation is publicly available at
http://github.com/jlianglab/Fixed-Point-GAN

http://github.com/jlianglab/Fixed-Point-GAN

