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1. Introduction

In this supplementary material we complement our orig-
inal manuscript with additional quantitative and qualitative
results, which better showcase the advantages of the pro-
posed self-supervised denoising model over traditional fil-
tering and supervised CNN-based approaches. In partic-
ular, we present the adopted implementation details used
for training our model, as well as additional qualitative re-
sults for the two 3D application experiments presented in
the original manuscript, namely 3D scanning with Kinect-
Fusion [8] and full-body 3D reconstructions using Poisson
3D surface reconstruction [4]. A comparative evaluation
with the learning-based state-of-the-art methods on Interi-
orNet (IN) [7] follows, while an ablation study concludes
the document.

The aforementioned results based on all methods pre-
sented in the originally manuscript, namely Bilateral Filter
(BF [10]), Joint Bilateral Filter (JBF [6]), Rolling Guidance
(RGF [12]), and data-driven approaches (DRR [3], DDR-
Net [11]). Note that for the DRR and DDRNet methods,
additional results aim to highlight the over-smoothing ef-
fect of the former and the weakness of the latter to denoise
depth maps captured by the Intel RealSense D415 sensors.
In more detail, DRR is trained on static scenes that contain
dominant planar surfaces and, thus tends to flatten (i.e. over-
smooth) the input data. On the other hand, the available
DDRNet model 1 that we used, produces high levels of fly-
ing pixels (i.e. spraying, see Fig. 1) which can be attributed
to background (zero depth values) and foreground blend-
ing, even though its predictions are appropriately masked.
While the authors have not provided the necessary informa-
tion, it is our speculation that the available model is trained
using Kinect 1 data, which is partly supported by the sub-
optimal results it produces on Kinect 2 data.

Qualitatively, the remaining traditional filters (BF, JBF,
RGF) perform similarly, with RGF showcasing the most
competitive results to our method. However, note that
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1https://github.com/neycyanshi/DDRNet

Figure 1. Denoising results using original DDRNet[11] model on
Kinect 2 data.

RGF utilizes color information in an iterative scheme. It
is worth mentioning that depending on the evaluation,
i.e. KinectFusion or Poisson reconstruction, the difference
in the quality among the methods may be more or less
distinguishable.

1.1. Implementation Details

The CNN-based autoencoder presented in the original
manuscript is implemented using the PyTorch framework
[9]. The hyperparameters’ initialization follows, while
the notation from Section 3.2 (see original manuscript) is
adopted. We set λ1 = 0.85, λ2 = 0.1, λ3 = 0.05, while
α for the photometric loss is set to 0.85. Regarding the
outlier estimators, we set γ = 0.447 for the Charbonnier
and c = 2.2 for the Tukey penalty, respectively. During
training, ELU(a) non-linearity with a = 1 is used for all
CONV layers except for the output one, while Adam [5]
with β1 = 0.9, β2 = 0.99 is used for optimization. Xavier

https://github.com/neycyanshi/DDRNet


initialization [2] is used for the network weights. The net-
work is trained with learning rate set to 0.0002 and a mini-
batch size of 2. Training converges after about 102k itera-
tions. The network is trained with depth and color images
of 640× 360 resolution, while no data augmentation is per-
formed. All collected depth maps are thresholded to 3m
and thus σD = 3. Note that the mean inference time on a
GeForce GTX 1080 graphics card is 11ms.

1.2. KinectFusion Reconstruction

KinectFusion [8] reconstructs 3D surfaces by temporally
aggregating and fusing depth maps, also implicitly denois-
ing the outcome through the Truncated Signed Distance
Functions (TSDFs) fusion process. Therefore, the method’s
most typical failure case corresponds to an insufficient reg-
istration of an input frame, either attributed to difficult to
track motion (pure rotation, fast translation) or noisy input.
Our results are offered in the exact same sequences, and
thus the former source of error is removed, with any track-
ing failures attributed to noisy inputs.

Consequently, even noisy depth observations may result
in high quality 3D scans. Although the original depth es-
timates from D415 are noisy, in most cases, KinectFusion
manages to reconstruct a relatively smooth 3D mesh sur-
face. This is illustrated in Fig. 4 in the first row, where the
resulting meshes using the raw depth input are presented.
It is worth noting that D415 depth map denoising is proven
challenging for the data-driven methods. In particular, DRR
tends to over-smooth the surfaces, while DDRNet is com-
pletely incompatible with the depth data.

KinectFusion on DDRNet denoised data was repeatedly
failing to make correspondences in consecutive frames due
to the increased amount of “spraying” in the denoised out-
put. Thus, the fact that our proposed method does not fall
into the same limitations as the other data-driven methods
can be considered an advantage. KinectFusion-based re-
sults are shown in Fig. 4. For comparison, the last row of
Fig. 4 shows 3D reconstruction using frames acquired by
Microsoft Kinect 2 device, which captures higher quality
depth.

We further experimented with DDRNet by re-
implementing its denoising part, using traditional and
partial convolutions, denoted as DDRNet-TC and DDRNet-
PC, respectively. The model was trained using our dataset,
which resulted in better results due to the sparse nature of
the data. Since our dataset does not contain ground-truth
depth-maps, we employ forward-splatting (see Section 3.1
of the original original manuscript) in order to produce
cleaner depth-maps to use as near ground-truth. As Ta-
ble 1(top) shows, our model outperforms DDRNet retrained
models, in both regular and partial convolution by a wide
margin, which can be attributed to the different behaviour
of splatting color images compared to depth maps. For

Figure 2. Projected depth maps to 3D domain, after denoising with
DRR [3] (left) and original DDRNet [11] (right). This figure show-
cases the spray at the boundaries, which leads Poisson reconstruc-
tion method to fail (see Section 1.3).

Table 1. Top to bottom sections: a) DDRNet trained with splat-
ted depth, b) learning-based methods evaluation on IN, c) ablation
results of the proposed denoising model.

Model MAE RMSE M(◦)↓ 10(%)↑ 20(%)↑ 30(%)↑
DDRNet-TC 121.83 265.10 56.17 1.41 5.79 13.41
DDRNet-PC 75.68 241.58 40.46 5.38 18.83 36.13
DDRNet (IN) 140.80 198.45 59.86 1.72 6.07 11.32
DRR (IN) 86.88 144.97 25.84 26.72 48.62 65.19
Ours (IN) 33.44 81.28 20.08 39.53 64.12 77.37
AE 26.35 59.92 36.30 7.78 25.75 45.70
P+N 28.04 60.20 34.32 8.73 28.55 49.46
P+D 26.43 58.31 31.71 9.62 31.39 53.98
P-only 25.96 58.30 32.13 9.39 30.69 53.11
P+D+N (best) 25.11 58.95 32.09 9.61 31.34 53.65

completeness, we qualitatively evaluated the performance
of DDRNet-PC using KinectFusion (see Fig. 4, middle).
Note that even if denoising is improved compared to the
original DDRNet, the reconstructed output quality is still
low.

1.3. Poisson Reconstruction

The second method used to qualitatively compare the
aforementioned methods is the well-established 3D Poisson
reconstruction [4, ?]. The setup is realized as 4 RealSense
D415 sensors placed in a cross-like setup to capture a static
subject in a full 360◦ manner. Poisson reconstruction uti-
lizes surface information (oriented point-clouds) in order
to recover the original 3D shape, constituting an appro-
priate application to compare denoising results while pre-
serving geometric details in a qualitative manner. While
the produced reconstructions are watertight, “balloon” like
artifacts can be observed in empty areas where the proxi-



mal surface information is inconsistent or noisy. This can
be seen in Fig. 5 (1st row-“Raw Depth”). The curvature
of these proximal patches is an indicator of the smooth-
ness across the boundary of the hole (empty area). Fig. 5-
7 demonstrate the results of full-body 3D reconstructions
using 4 depth maps denoised with each evaluated method,
as well as the original raw input (1st row). Note that re-
sults using DDRNet (both original and retrained) and DRR
methods are omitted, as their denoised depth maps are af-
fected by “boundary spraying” (see Fig. 2), which leads to
highly cluttered 3D reconstructions. Depth maps denoised
using RGF are also affected by slight spraying, which is
easily removed manually in order to present a fair quality
result. From the presented results, it can be seen that 3D
reconstruction from raw (noisy) depth maps preserves little
to no geometric details, while using depth maps from BF
and JBF methods leads to local region smoothing. On the
other hand, RGF leads to higher quality results as which are
comparable to those produced by our model. It should be
noted though that our model infers using only depth input
while RGF requires color information and an appropriate
selection of parameters.

1.4. Evaluation on InteriorNet

IN consists of 22M layouts of synthetic indoor scenes
with varying lighting configuration. We use 6K samples
from the first 300 scenes. We corrupt these clean ground
truth depth maps with two artificial noise patterns in order to
create noisy-ground truth data pairs; a) a noise similar to the
one presented in [1], and b) a ToF-like, non-linear (distance-
dependent), bi-directional noise distribution along the ray.
The quantitative results of the learning - based methods are
shown in Table 1(middle). As for qualitative results on this
task, we provide the original, ground truth and denoised im-
ages in Fig. 3.

1.5. Ablation Study

Finally, we perform an ablation study of various aspects
of out deep depth denoising model. Spacifically, we exam-
ine cases of a) training the model as a plain autoencoder
(AE) without bell and whistles (only reconstruction loss
used), b) training the AE with photometric loss only (P-
only), c) regularizing supervision using the BerHu depth
loss (P+D), d) using normal priors to guide the supervi-
sion (P+N), instead of depth regularization, and e) combin-
ing photometric supervision with depth and surface normals
losses (P+D+N), as presented in the original manuscript.

The results of the aforementioned cases evaluated on our
dataset are presented in Table 1(bottom). These results in-
dicate that photometric supervision is a better alternative
than a plain autoencoder train with a reconstruction loss, as
well as that depth regularization is important as it aids pho-
tometric supervision by constraining it when its assump-

tions break (no texture, etc.). Further, note that the normals
smoothness prior leads to a significant improvement of the
MAE, while achieving the second best performance in the
rest of error metrics. Based on this analysis, we adopt the
last training scheme for our depth denoising model.
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Figure 3. Quantitative results of learning-based methods in rendered images from InteriorNet layouts. The first row and last row show the
noisy input and ground truth respectively. DDRNet fails to remove most of the noise. On the other hand, DRR shows promising results,
although it tampers the shape of some objects and fails to preserve fine details. Our model shows superior results comparing to other
methods on these data.



Figure 4. Reconstruction results of KinectFusion scans. It is worth mentioning that even noisy raw input can be reconstructed into a high
quality mesh (row 1). DDRNet and DRR fail to produce adequate quality meshes (see Section 1.2). Our model along with K2 and RGF
produce the best qualitative results, preserving a fair amount of structural details (e.g. face, bag, folds).



Figure 5. Poisson reconstruction sample. BF and JBF lead to low quality reconstruction due their inability to understand the global context
of the scene. Our method and RGF lead to higher quality reconstructions, restoring face details that are hardly spotted in “Raw Depth”
reconstruction.



Figure 6. Poisson reconstruction sample with the sensors placed higher (looking downwards) and slightly further away from the target.
This leads to erroneous surface estimations at the approximate leg region, mainly due to the partial visibility and data sparseness. Despite
the challenging setup, our method was able to successfully remove noise and preserve fine details (e.g. face, jacket folds).



Figure 7. Poisson reconstruction sample using the setup described in Fig. 6. Our method is the only one to remove the “balloon” noise at
the inner side of the jacket caused by noisy depth measurements.


