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Figure S1: Targeted Patch Attack: Additional results for targeted patch attack for ImageNet pretrained VGG19-BN network
similar to Figure 2 of the main paper. Images come from ImageNet validation set. The last row shows a failure case where
our patch is not completely hidden in the interpretation.
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Figure S2: Non-targeted Patch Attack: Comparison of Grad-CAM results for non-targeted patch attacks using our method
vs regular adversarial patch. The description is in Section 4.3 and the quantitative results are in Table 1 of the main paper.
We use ImageNet pre-trained VGG19-BN. The predicted label is written under each image, the non-targeted attack was
successful for all images, and Grad-CAM is always computed for the predicted category. Images come from ImageNet
validation set.
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Figure S3: Different networks and patch locations: Comparison of Grad-CAM visualization results for our targeted patch
attack vs regular adversarial patch. It uses ImageNet pretrained ResNet-34 network with the patch on the top right corner.
The description is in Section 4.4 and the quantitative results are in Table 2 of the main paper. The predicted label is written
under each image, the targeted attack was successful for all images in this figure, and Grad-CAM is always computed for the
target category. Images are from ImageNet validation set.
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Figure S4: Similar to Figure S3 of the supplementary, but for DenseNet-121 network.
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Figure S5: Targeted regular adversarial examples: As described in Section 4.6 of the main paper, we use an ImageNet
pretrained VGG 19-BN network to perform a targeted attack using our method as well as using standard PGD method. Note
that in this case, unlike other experiments, we compare Grad-CAM for the original category and not the target one. The
predicted label is written under each image. The attack was successful for all images. Note that compared to the original
image and the PGD adversarial image, the Grad-CAM for our adversarial image fires less on the object. This attack not only
reduces the probability of the original category, but also changes its interpretation. Images are from ImageNet validation set.
The quantitative results are in Table 4 of the main paper.
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Figure S6: Universal targeted patch attack: As described in Section 4.9 of the main paper, we compare Grad-CAM of our
universal attack on GAINext with the regular adversarial patch. The predicted label is written under each image, the targeted
attack was successful for all images, and Grad-CAM is always computed for the target category. Note that each row shows
the result for a different category chosen as the universal target. Images are from PASCAL VOC-2012 validation set. The
quantitative results are in Table 7 of the main paper.
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Figure S7: Similar to Figure S6 of the supplementary, but for different target categories. Interestingly, in the second row,
regular adversarial patch is already hidden in Grad-CAM although it is not optimized for.
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Figure S8: Similar to Figure S6 and S7 of the supplementary, but for different target categories.


