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In Sec. A, we discuss the costs of different types of la-
bels. In Sec. B, we observe the performance with varying
amounts of 3D box labels for C2D classes. In Sec. C and
Sec. D, we elaborate on the details of the networks and the
details of the training procedures, respectively. In Sec. E,
we provide additional qualitative results and figures on the
SUN-RGBD dataset and in Sec. F, qualitative results for the
KITTI dataset.

A. Time Costs of Labels

The SUN-RGBD dataset [25] required 2,051 hours to
label 64,595 3D bboxes, which is an average of 114s per
object. In contrast, the average time to label a 2D bbox ac-
cording to [17] is 35s per object but can be as fast as 7s
when using their proposed labeling method with no loss of
accuracy. Hence, it is potentially 3-16 times faster to label
2D compared to 3D bboxes.

B. In-Category Semi-supervision Performance

In the main paper, we assumed that there are no 3D
box labels for weak classes C2D, which is a cross-category
semi-supervised setting. In Fig. 1, we train our model and
the baseline “FPN*” on varying amounts of 3D box la-
bels for C2D to understand the performance of our model
in an in-category semi-supervised setting for the SUN-
RGBD dataset. When the percentage of 3D box labels used
for C2D is 100%, the semi-supervised baseline “FPN*”
(green line) becomes the fully-supervised “FPN*” (51.5%
mAP) and our proposed semi-supervised method (blue line)
becomes the fully-supervised “FPN* + BoxPC Refine”
(53.2% mAP).

We observe that our proposed method always performs
better than the baseline for different percentages of 3D box
labels of C2D classes. This demonstrates the usefulness of
our method even when labels are available for C2D classes.
Additionally, we note that the baseline with 50% 3D box la-
bels available forC2D achieves a similar performance to our
proposed method with 0% 3D box labels for C2D, which
demonstrates the effectiveness of the knowledge that has
been transferred from C3D classes.

Figure 1. 3D object detection mAP on SUN-RGBD val set of our
proposed model with different percentages of 3D labels for C2D .
The blue and green lines correspond to the “Ours + BoxPC + R +
P” and “FPN*” semi-supervised settings, respectively.

Figure 2. 3D object detection mAP on KITTI val set of our pro-
posed model with different percentages of 3D labels for C2D (3D
IoU threshold of 0.25).

Similarly, we perform the same in-category semi-
supervised setting for the KITTI dataset by varying the
amount of 3D box labels for C2D. In Fig. 2, our proposed
model (solid) trained under the in-category semi-supervised
setting still constantly performs better than the baseline
(dashed) for all percentages of 3D labels.

C. Network Details

C.1 Network Architecture of Baselines

Fig. 3 shows the network architecture for the original Frus-
tum PointNets (FPN) [2]. The same architecture is used



to obtain the results for “FPN” and the baseline “FPN*”
in Tab. 1 of the main paper. We remove the one hot
class vectors given as features to the fseg and fbox net-
works to get the stronger baseline “FPN* w/o OneHot”. The
performance improves because in the cross-category semi-
supervised setting, the network does not train on the strong
labels of inference classes. Hence, having class information
does not help the network during inference.

C.2 Network Component Details
In this section, we describe the details of the network com-
ponents in the baseline and proposed models for the cross-
category semi-supervised 3D object detection (CS3D) set-
ting. The fully-supervised 3D object detection (FS3D) set-
ting uses the same components except for minor changes.

The network components are given in Fig. 4. We use the
v1 instance segmentation and v1 box estimation networks
in FPN [2] as the instance segmentation and box estimation
networks in our baseline and proposed models. The BoxPC
Fit networks also use PointNet [3] and MLP layers to learn
the BoxPC features.

In the CS3D setting, we remove the one hot class vector
that is originally concatenated with the “Global Features” of
the v1 instance segmentation network because we are per-
forming class-agnostic instance segmentations. In the FS3D
setting, the one hot class vector is added back.

The v1 box estimation network is composed of the T-Net
and Box Estimation PointNet. The T-Net gives an initial
prediction for the center of the box bx, by, bz which is used
to translate the input point cloud to reduce translational vari-
ance. Then, the Box Estimation PointNet makes the box
predictions using the translated point cloud. Both CS3D
and FS3D settings use the same box estimation networks.
The details of the loss functions to train the box estimation
networks can be found in [2].

In the CS3D setting, the BoxPC Fit network learns class-
agnostic BoxPC Fit between 3D boxes and point clouds. In
the FS3D setting, we concatenate a one hot class vector to
the “BoxPC Features” to allow the network to learn BoxPC
Fit that is specific to each class.

D. Training Details

D.1 Training of BoxPC Fit Network
As discussed in the paper, we have to sample from 2 sets
of perturbations P+ and P− to train the BoxPC Fit Network
to understand what is a good BoxPC fit. To sample per-
turbations δ = [δx, δy, δz, δh, δw, δl, δθ] from either P+ or
P−, we uniformly sample center perturbations δx, δy, δz ∈
[−0.8, 0.8], size perturbations δh, δw, δl ∈ [−0.2, 0.2] and
rotation perturbations δθ ∈ [0, π]. We perturb a 3D box
label B∗ to obtain a perturbed 3D box label B∗ − δ with
a sampled perturbation δ. Next, we check if B∗ − δ has
an IOU with B∗ that is within the range specified by the

set P+ or P−, i.e if α+ ≤ IOU(B∗ − δ,B∗) ≤ β+ or
α− ≤ IOU(B∗ − δ,B∗) ≤ β−, respectively. We accept
and use it as a single input if it satisfies the IOU range for
the set. We repeat the process until we have enough sam-
ples for a minibatch. Specifically, each minibatch has equal
number of B∗ − δ samples from P+ and P−.

D.2 Cross-category Semi-supervised Learning
Let CA = {bathtub, bed, toilet, chair,
desk} and CB = {dresser, nightstand, sofa,
table, bookshelf}. We train with C3D = CB and
C2D = CA, i.e. we train on the 2D and 3D box labels of
CB and the 2D box labels of CA, to obtain the evaluation
results for CS3D on CA. We train with C3D = CA and
C2D = CB to get the evaluation results for CS3D on CB .

SUN-RGBD For our 2D object detector, we train a Faster
RCNN [1,4] network on all classes C = C2D∪C3D. When
we train the BoxPC Fit network on classes C3D, we set the
perturbation parameters to α+ = 0.7, β+ = 1.0, α− =
0.01, β− = 0.25. The loss weights for the BoxPC Fit net-
work are set to wcls = 1, wreg = 4. When we train the 3D
object detector, we set the lower and upper bound boxes for
the relaxed reprojection loss to B∗

lower = B∗
2D, B

∗
upper =

1.5B∗
2D and volume threshold for all classes to V = 0. The

loss weights for the 3D object detector are set to wc1−reg =
0.1, wc2−reg = 0.1, wr−cls = 0.1, wr−reg = 2, ws−cls =
0.1, ws−reg = 2, wcorner = 0.1, wfit = 0.05, wreproj =
0.0005, wvol = 0, ws−var = 0.1.

KITTI For our 2D object detector, we use the released
detections from FPN [2] for fair comparisons with FPN.
We set the perturbation parameters to α+ = 0.8, β+ =
1.0, α− = 0.01, β− = 0.4 when we train the BoxPC Fit
network on classes C3D. The loss weights of the BoxPC
Fit network are set to wcls = 1, wreg = 4. We set the
lower and upper bound boxes for the relaxed reprojection
loss to B∗

lower = B∗
2D, B

∗
upper = 1.5 B∗

2D for Pedestrians
and Cyclists, and B∗

lower = B∗
2D, B

∗
upper = 1.25 B∗

2D for
Cars when we train the 3D object detector on the classes
C. We set the volume threshold for Cars to V car = 10 and
0 for the other classes. The loss weights for the 3D object
detector are set to wc1−reg = 1, wc2−reg = 1, wr−cls =
1, wr−reg = 20, ws−cls = 1, ws−reg = 20, wcorner =
10, wfit = 1, wreproj = 0.2, wvol = 1, ws−var = 2.

D.3 Fully-supervised Learning
In the fully-supervised setting, we train and evaluate on C.

SUN-RGBD We use the same 2D detector as in the CS3D
setting. When we train our BoxPC Fit network, we set the
perturbation parameters to α+ = 0.6, β+ = 1.0, α− =
0.05, β− = 0.4. The loss weights of the BoxPC Fit net-
work are set to wcls = 1, wreg = 4. For our 3D object de-
tector, we set the parameters to wc1−reg = 0.1, wc2−reg =
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Figure 3. Network architecture for the original Frustum PointNets for fully-supervised 3D object detection. This network corresponds to
“FPN” and the baseline “FPN*” in Tab. 1 of the main paper. To obtain the stronger baseline “FPN* w/o OneHot”, we remove the one hot
class vectors that are given as features to fseg and fbox.
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Figure 4. Network component details for our baseline and proposed models that are used in cross-category semi-supervised 3D object
detection. In fully-supervised setting, a one hot class vector is added to the “Global Features” of the Instance Segmentation Network and
the “BoxPC Features” of the BoxPC Fit Network.
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Figure 5. Precision recall (PR) curves for 3D object detection on SUN-RGBD val set with different methods. “FPN (Fully-supervised)” is
the fully-supervised model that gives an upper-bound performance for the rest of the models which are cross-category semi-supervised.

0.1, wr−cls = 0.1, wr−reg = 2, ws−cls = 0.1, ws−reg =
2, wcorner = 0.1. Next, we use the trained BoxPC Fit
network to refine the 3D box predictions of this fully-
supervised model without further training.

KITTI We use the same 2D detections as the CS3D set-
ting. We train one BoxPC Fit network for each of the
3 classes to allow each network to specialize on improv-
ing box predictions for a single class. For Cars, we set
α+ = 0.7, β+ = 1.0, α− = 0.6, β− = 0.8. For Pedes-
trians, we set α+ = 0.7, β+ = 1.0, α− = 0.3, β− = 0.7.
For Cyclists, we set α+ = 0.7, β+ = 1.0, α− = 0.5, β− =
0.7. The loss weights of the BoxPC Fit network are set to
wcls = 0, wreg = 4. Next, we use the trained BoxPC Fit
networks to refine the 3D box predictions of the 3D object
detector model released by [2] without further training.

E. Additional Results for SUN-RGBD

In Fig. 5, we plot the precision-recall curves for different
methods to study the importance of each proposed compo-
nent. All the methods are cross-category semi-supervised
except for “FPN (Fully-supervised)”, which is the fully-
supervised FPN [2] that gives an upper-bound performance
for the methods. We observe that “Ours + BoxPC + R +
P” (in yellow) has higher precision at every recall than the
baseline “FPN w/o OneHot” (in blue) for almost all classes.

We also provide additional qualitative results on the
SUN-RGBD dataset in Fig. 6. The predictions made by
the baseline model tend to be large and inaccurate due to
the lack of strong labels in the weak classes. In the third
example of Fig. 6, we see that the predictions by the base-
line model can also be highly unnatural as it cuts through

the wall. On the contrary, we observe that the proposed
model’s predictions tend to be more reasonable and closer
to the fully-supervised model despite not having strong la-
bels for the weak classes. In the last two examples of Fig. 6,
the heavy occlusions in the scene makes it difficult for the
baseline and proposed models to make good predictions.

F. Qualitative Results for KITTI

In Fig. 7 and Fig. 8, we provide qualitative comparisons
between the baseline, fully-supervised and proposed mod-
els for the KITTI dataset. In both Fig. 7 and Fig. 8, we
again observe that the proposed model is closer to the fully-
supervised model than the baseline model. Notably, in the
first example (top left) and ninth example (bottom right)
of Fig. 7, we observe that the proposed model is able to
make significantly good predictions on Pedestrians despite
the crowded scene.

For almost all of the Car instances, the baseline model
makes excessively small predictions because it was trained
on Pedestrian and Cyclist classes which are much smaller.
Our proposed model is able to make better predictions on
Cars but the orientation of the 3D box predictions can be
improved further.

In the last two examples of Fig. 8, we show some of the
difficult scenes for our baseline and proposed models. This
is because there are heavy occlusions and poor understand-
ing of Cars since the models were trained on Pedestrians
and Cyclists, which have very different shapes and sizes
from Cars.
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Figure 6. Additional qualitative comparisons between the baseline, fully-supervised and proposed models on the SUN-RGBD val set. The
baseline model’s predictions tend to be large and inaccurate because it is unable to understand how to fit objects from the weak classes.
The last two examples (bottom right) are difficult scenes for the baseline and proposed models due to heavy occlusions.
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Figure 7. Qualitative comparisons between the baseline, fully-supervised and proposed models on the KITTI val set. The proposed model
is much closer to the fully-supervised model than the baseline model. The baseline model’s predictions for Cars tend to be inaccurate or
excessively small due to the lack of a prior understanding on the scale of Cars.
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Figure 8. Additional qualitative comparisons between the baseline, fully-supervised and proposed models on the KITTI val set. The last two
examples (bottom right) are difficult scenes for the baseline and proposed models. This is due to heavy occlusions and poor understanding
on how to fit Cars using transferred 3D information from Pedestrians and Cyclists, which have very different shapes from Cars.


