
Video Face Clustering with Unknown Number of Clusters
SUPPLEMENTARY MATERIAL

Makarand Tapaswi1,2,3 Marc T. Law2,3,4 Sanja Fidler2,3,4
1Inria 2University of Toronto 3Vector Institute 4NVIDIA

makarand.tapaswi@inria.fr, {makarand,law,fidler}@cs.toronto.edu
https://github.com/makarandtapaswi/BallClustering_ICCV2019

In this document, we discuss how we fine-tune our mod-
els on the test episodes using the BCL loss. We also briefly
discuss the challenges to fine-tune using triplet or prototypi-
cal losses, but show that they can use the constraints inspired
by BCL in Sec. A. Additionally, we will show that variants
of K-means that aim to predict the number of clusters such
as X-means [4] and G-means [3] perform worse than our
proposed method (Sec. B). Finally, we present additional
quantitative and qualitative results on the TV series episodes
introduced in the main paper in Sec. C.

A. Fine-tuning on test episodes
As discussed in the related work section, many clustering

approaches use unsupervised constraints that arise from the
video to learn cast-specific metrics [2, 7, 8, 9, 10, 11, 12].
The positive constraints are obtained from face images within
a track that are considered similar; and negative constraints
from faces that appear at the same time in the video that
can be assumed to be dissimilar. Note that most previous
works know the number of clusters, and use the constraints
to improve the distance metric.

In the following, we show how our method can be mod-
ified to work with such positive and negative constraints.
We also discuss the limitations of the baselines for fine-
tuning, but propose an alternative that uses BCL pair-wise
constraints.

Ball Cluster Learning. Recall that our constraints are
originally based on cluster samples and their centroids.
For all xi ∈ Ck, BCL aims to satisfy d2(fi, µk) < b and
d2(fi, µv) > γ, where γ = 9b+ ε and xi 6∈ Cv .

For a positive pair xi ∈ Ck, xj ∈ Ck, and a negative coun-
terpart xu ∈ Cv, the centroid constraints can be modified
as:

d2(fi, fj) < 4b and d2(fi, fu) > 4b+ ε. (1)

In practice, as the model is already trained, we wish to
only fine-tune on the positive and negative pairs. In most

cases, the positive constraints are already satisfied, and us-
ing the relaxed constraint hurt performance. Thus, we use:
d2(fi, fj) < min

(
d2ori(fi, fj), 4b

)
, where d2ori(fi, fj) is the

distance between the pair prior to fine-tuning. The con-
straints are formulated as loss functions to train the model
by using the [·]+ = max(0, ·) operator as before.

We tried an analogous strategy for dissimilar pairs (using
max

(
d2ori(fi, fu), 4b+ ε

)
) but it did not provide significant

performance improvement. Thus, we ignored it.
During training, we freeze the ball squared-radius b, use

a learning rate of 0.0003 (0.1 times the original), and select
a random face image from each track in the pairs (about
1,000 pairs for each episode). The model parameters are
updated for a fixed number of iterations (2,000 for all single
episodes). As before, we perform clustering by using Hi-
erarchical Agglomerative Clustering (HAC) with complete
linkage and distance threshold τ = 4b.

Triplet loss [5] is well suited to train a model with above-
mentioned automatically obtained positive and negative pairs.
However, it does not involve learning a threshold that can
be used directly with HAC (or any clustering). As we are
fine-tuning on test episodes, we do not have access to a
validation set that would allow us to obtain such a threshold.
Furthermore, optimizing performance on each test episode
by choosing a new best threshold is inappropriate.

To circumvent this, we use the original threshold learned
on the validation set τ and formulate pair-wise constraints
in a similar manner to BCL. In particular, the positive pairs
follow d2(fi, fj) < τ and negative pairs d2(fi, fu) > τ .
Thus, we fine-tune the model checkpoint trained using the
triplet loss with the BCL loss. All other implementation
details (learning rate, number of iterations, etc.) are same as
those used for BCL.

Prototypical loss [6]. Unlike the triplet loss that is de-
signed to work with samples (triplets), the prototypical loss
needs class/cluster centroids. It also faces the same challenge

https://github.com/makarandtapaswi/BallClustering_ICCV2019

of not knowing the number of clusters, or not having a clear
stopping criterion for HAC. Nevertheless, as discussed for
triplet loss above, we adopt BCL pair-wise constraints for the
prototypical loss with the threshold τ chosen on validation.
All other details are kept same.

Evaluation. Table 1 presents results of fine-tuning on each
episode. For each episode, we see that BCL fine-tuned model
(BCL-FT) is able to predict the number of clusters quite accu-
rately. We believe this can be attributed to background char-
acters often appearing simultaneously, providing sufficient
negative constraints. On the combined episodes datasets (last
three columns of Table 1), the negative constraints are within
each episode, and it is not possible to distinguish between
background characters across episodes. This explains why
BCL predicts fewer clusters than ground-truth.

Both baselines (TRI-FT and PRO-FT) also show good
performance improvements after fine-tuning with BCL. With
respect to predicting the number of clusters, PRO-FT and
BCL-FT seem to have flipped roles, with PRO-FT now pre-
dicting fewer clusters after fine-tuning, but over-clustering
before fine-tuning (see Table 5 of the main paper). However,
note that BCL-FT with more clusters has higher purity, while
PRO (no fine-tune) had lower purity even with more clusters
(in Table 5).

Conclusion. This experiment emphasizes that BCL com-
bines the best of all worlds. Models can be trained with
both samples and centroids, or pairs and triplets. Most im-
portantly, BCL learns a threshold to predict the number of
clusters automatically. In addition, BCL pair-wise loss can
be used to fine-tune models trained with other losses to
achieve performance gains.

B. K-means variants
Owing to the popularity of the K-means approach for

clustering, there is some work on automatically estimating
the number of clusters while performing clustering based
on some criterion. In this section, we will look at two such
methods and analyze how they work when applied to our
challenging datasets. Note that both these methods do not
further learn an embedding, but rely on existing features.
Thus, we evaluate performance on the Base CNN represen-
tations – that are actually quite good (see Table 3), as well
as the features learned using our BCL loss function.

X-means [4] In this variant, clustering starts with all sam-
ples in the same cluster and splits until some stopping crite-
rion. In particular, at each iteration, a cluster is split into two
components. The Bayesian Information Criterion (BIC) is
used to decide whether the newly created two clusters are
preferred over the original single cluster. Clustering stops

when a maximum number of clustersKmax has been crossed,
or when further splitting any cluster would result in lowered
BIC scores.

Table 2 rows 2-4 show the performance of X-means when
using base CNN features, and rows 5-7 when using features
trained with BCL loss. We choose Kmax to be 40 for the
BBT episodes, 80 for BUFFY, 150 for BBT (6 episodes
combined) and BUFFY (6 episodes combined), and 300 for
BOTH (all 12 episodes). These are strong upper bounds for
all datasets. However, as seen from the results, the method
stops the iterations only after crossing the maximum number
of clusters in all datasets (i.e. all predicted number of clusters
are higher than Kmax). This, together with the poor NMI
scores, suggests that the using BIC may not be a sufficiently
strong criterion for a complex dataset.

G-means [3] Similar to X-means, this approach also starts
with all samples in one cluster, and iteratively splits them
based on some criterion. Different to X-means, the stop-
ping criterion used here determines the “Gaussian-ness” of
samples around the cluster centroid. In particular, clusters
that have a strong Gaussian shape are not split further, while
others (e.g. those that may be bimodal) are split into two.
This process repeats until no more clusters can be split. The
Anderson-Darling test is used to determine whether a distri-
bution is Gaussian.

We present the results of G-means in the second half of
Table 2. We see that G-means also fails at reliably estimating
the number of clusters, and prefers to overcluster all datasets.

C. Additional evaluation

Base CNN representations. In Table 3, we present the
performance of base CNN representations with standard
HAC clustering and using a threshold learned on the vali-
dation set. These results should be analyzed together with
Table 5 of the main paper, but were omitted due to space con-
straints. Note that the threshold is chosen such that correct
number of clusters are created on the validation set. While
the base representation is quite good (as seen in NMI and
WCP curves), choosing a threshold is an unreliable method
and results in over-clustering on the test episodes.

When K is known. We also present results when (for
some reason) the number of clusters K is known. We com-
pare against best performing baselines: triplet and prototypi-
cal loss, on all episodes of the test set. Table 4 shows that
our method is able to achieve higher NMI and WCP in most
cases (12 out of 15). Note that this experiment is presented
for completeness, as the main point of BCL is to automat-
ically predict the number of clusters, when K is unknown.
All results are without fine-tuning.

BBT BUFFY BBT BUFFY BOTH
S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 S5E1 S5E2 S5E3 S5E4 S5E5 S5E6 6 ep. 6 ep. 12 ep.

1 #Ch 8 6 26 28 25 37 13 22 15 32 38 45 103 109 212
Pre-trained Triplet Loss [5] + BCL Fine-tune

2 #Cl 6 7 13 12 12 23 16 21 16 18 22 23 33 54 73
3 NMI 97.98 97.13 91.22 86.37 95.25 83.38 85.91 82.62 78.98 75.34 76.04 78.66 89.09 76.28 78.95
4 WCP 99.09 99.84 92.73 89.23 94.08 86.31 91.95 87.71 85.76 78.95 80.83 79.59 92.40 81.45 82.26

Pre-trained Prototypical Loss [6] + BCL Fine-tune
5 #Cl 6 6 19 16 15 41 17 22 21 27 21 34 61 72 113
6 NMI 96.76 97.09 91.43 90.83 95.84 85.38 77.98 83.01 79.29 77.24 81.74 82.31 87.74 79.90 82.81
7 WCP 98.17 99.67 95.00 93.31 94.85 93.69 90.82 87.11 88.86 82.52 84.76 84.80 93.96 85.17 85.26

Pre-trained Ball Cluster Learning (Ours) + BCL Fine-tune
8 #Cl 9 8 24 24 21 36 23 27 25 36 38 40 69 78 126
9 NMI 97.34 97.80 94.00 90.42 95.83 83.32 84.59 82.59 78.76 77.58 81.71 79.51 88.26 77.05 80.42

10 WCP 99.24 99.67 96.06 96.08 97.71 90.36 94.97 88.12 90.28 86.19 90.24 88.13 94.11 86.64 85.84

Table 1. Clustering performance on episodes of the test set, with fine-tuning on the test set. The last three columns show results on datasets
created by combining tracks from several episodes. #Ch is the ground-truth number of characters (row 1); and #Cl is number of predicted
clusters and should be close to the number of characters. Read this table by looking at each column, and seeing which method is able to
predict the number of clusters and has high NMI and WCP scores.

BBT BUFFY BBT BUFFY BOTH
S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 S5E1 S5E2 S5E3 S5E4 S5E5 S5E6 6 ep. 6 ep. 12 ep.

1 #Ch 8 6 26 28 25 37 13 22 15 32 38 45 103 109 212

X-Means on Base CNN representation
2 #Cl 41 42 45 41 51 48 93 89 90 82 101 91 175 180 327
3 NMI 55.74 56.83 65.75 64.89 66.47 66.51 59.61 66.86 57.56 62.99 61.03 66.23 56.26 62.67 65.85
4 WCP 98.63 97.89 92.73 90.70 94.27 84.64 94.59 90.74 88.86 87.75 88.21 86.15 92.71 87.21 88.68

X-Means on features learned with BCL
5 #Cl 42 25 45 34 43 44 97 41 81 84 80 91 162 163 313
6 NMI 56.90 62.46 69.82 68.35 71.46 70.08 60.12 72.16 59.99 65.90 66.59 69.72 58.62 63.91 66.63
7 WCP 99.24 97.89 95.45 91.35 96.18 87.38 95.85 88.62 91.04 91.31 92.02 89.48 93.22 88.73 88.87

G-Means on Base CNN representation
8 #Cl 57 31 56 33 46 67 87 101 117 74 73 101 243 404 567
9 NMI 55.29 62.61 70.41 71.48 71.74 67.00 58.07 66.63 58.34 67.06 63.50 69.08 57.64 61.57 66.07

10 WCP 98.32 96.42 94.85 91.35 94.85 86.55 89.18 89.93 88.94 89.31 87.14 87.68 92.14 87.21 87.95
G-Means on features learned with BCL

11 #Cl 23 39 41 35 45 79 42 54 75 63 72 106 137 337 481
12 NMI 68.51 64.54 72.74 70.38 73.22 66.18 67.87 61.43 62.88 65.70 66.91 69.09 60.86 61.63 64.42
13 WCP 98.93 98.05 92.42 91.35 94.85 87.02 91.07 71.30 84.00 86.41 88.45 87.86 89.94 85.51 84.06

Table 2. Clustering performance on episodes of the test set using two variants of K-means that predict the number of clusters.

Choosing a threshold on train set. As the training set is
much larger than validation, it might seem that the baselines
may perform better when choosing a threshold on the vali-
dation set. However, this is not the case as observed from
Table 5. As the MLP ϕθ fits well to the training set a smaller
cutoff threshold (distance) is selected resulting in more clus-
ters on unseen data. Thus, it is important to have a separate
validation set.

NMI and WCP vs. number of clusters. We plot the NMI
and WCP curves for all methods for each episode of BBT
in Fig. 1 and BUFFY in Fig. 2. All results are before fine-
tuning. We wish to draw the reader to the following observa-
tions:
1. The threshold for prototypical loss is quite stable and
is able to predict the number of clusters well (as was dis-

cussed in Table 5 of the main paper). However, the purity
is almost always lower than our method, indicating that
even though it makes more clusters, the formed clusters tend
to be more heterogeneous (i.e. contain more samples from
different categories).
2. Our method shows higher NMI and WCP irrespective of
the operating point in most episodes.
3. The base representations have very good performance
curves. However, their operating points (chosen based on
the validation threshold) are far from the optimal number
of clusters. Cross-entropy loss, especially when used with
thousands of classes, seems to be effective at learning classi-
fication as well as clustering.

Qualitative visualization of clusters. Finally, we visual-
ize the clusters created by Triplet loss (TRI), Prototypical

BBT BUFFY BBT BUFFY BOTH
S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 S5E1 S5E2 S5E3 S5E4 S5E5 S5E6 6 ep. 6 ep. 12 ep.

1 #Ch 8 6 26 28 25 37 13 22 15 32 38 45 103 109 212

Base CNN representation
2 #Cl 36 38 49 51 36 59 76 75 94 93 95 92 200 407 609
3 NMI 59.84 60.60 68.18 69.18 74.85 68.42 61.66 67.94 57.88 65.01 65.59 66.90 59.33 60.00 64.80
4 WCP 97.41 97.72 92.88 92.66 95.42 86.31 91.95 88.02 88.27 89.64 91.31 85.52 93.19 88.08 89.14

Table 3. Clustering performance on episodes of the test set when using base CNN representation.

Method Metric BBT BUFFY BBT BUFFY ALL
S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 S5E1 S5E2 S5E3 S5E4 S5E5 S5E6 6 ep. 6 ep. 12 ep.

Triplet Loss [5]
KM NMI 73.2 83.4 74.7 70.5 75.5 67.8 74.3 64.7 68.7 64.6 68.8 66.0 57.8 59.2 62.6
KM WCP 93.6 96.7 93.2 91.4 93.7 83.7 88.1 72.3 80.8 80.1 86.1 78.0 89.7 77.7 80.5

HAC NMI 88.3 69.0 79.1 76.6 81.9 70.8 76.2 64.1 66.9 64.9 70.7 67.6 64.0 60.1 65.3
HAC WCP 98.5 79.2 93.0 91.5 94.7 80.4 86.4 67.4 77.3 73.3 84.0 76.5 90.2 72.7 76.9

Prototypical Loss [6]
KM NMI 80.8 82.5 76.0 72.3 76.0 69.4 79.5 74.6 74.3 71.9 71.4 72.5 60.7 64.5 66.8
KM WCP 95.0 95.6 93.6 91.7 94.3 83.7 89.4 84.2 83.7 86.0 88.9 84.7 91.3 85.4 85.6

HAC NMI 87.6 86.6 83.1 80.3 89.2 74.0 67.9 68.4 77.4 70.6 76.5 73.8 68.3 65.8 70.3
HAC WCP 94.7 94.8 94.2 91.0 96.2 85.2 74.8 73.0 79.9 81.2 85.1 82.8 91.1 80.0 83.3

Ball Cluster Learning (Ours)
KM NMI 83.9 90.1 73.2 70.2 76.9 71.6 78.9 79.1 72.0 72.9 71.6 74.8 60.5 66.7 68.7
KM WCP 98.5 99.2 92.9 91.2 93.5 86.1 91.6 87.4 81.6 87.6 88.8 87.7 92.0 87.3 88.0

HAC NMI 92.8 91.9 84.3 78.5 86.1 76.1 81.3 75.3 77.9 75.9 76.9 78.6 70.6 69.1 72.5
HAC WCP 98.6 98.2 92.6 91.7 96.0 86.7 89.6 81.4 81.4 87.3 91.2 88.5 93.0 85.3 86.2

Table 4. Comparison between models trained with triplet, prototypical, and our approach when the number of clusters is known. We evaluate
both K-means (KM) as well as Hierarchical Agglomerative Clustering (HAC) to obtain the appropriate number of clusters. A short version
of this appeared as Table 6 in the main paper.

Loss (PRO), and our method Ball Cluster Learning (BCL)
on one episode of BBT (Fig. 3) and BUFFY (Fig. 4). Each
cluster is visualized by selecting 6 random face tracks (when
available), and one face image per track. All results are
without fine-tuning.

These figures also throw light on the difficulty of our
dataset that includes wide variations in illumination and
pose. Tracks, their labels and features, and our implemen-
tation of BCL is available at https://github.com/
makarandtapaswi/BallClustering_ICCV2019.

In Fig. 3, BCL achieves close to the correct number of
clusters, and separates the unknown character with just 2
tracks (C:2). Both triplet and prototypical losses lead to over
clustering. E.g. Leonard is split to C:1, C:6, C:7 and C:12
in triplet loss, and C:1, C:4, C:6, C:11, C:13 when using
prototypical loss.

BUFFY-S5E3 (Fig. 4) is a unique episode in which one of
the lead characters Xander is duplicated due to a magic spell
(the duplicate is played by the actor’s identical twin). Never-
theless, we see that BCL achieves reasonable performance,
and is able to find minor characters (Joyce C:9, the building
manager C:10), as well as isolate one of the background
characters (C:11).

References
[1] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a

Similarity Metric Discriminatively, with Application to Face

Verification. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2005. 5

[2] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia
Schmid. Unsupervised Metric Learning for Face Identifica-
tion in TV Video. In International Conference on Computer
Vision (ICCV), 2011. 1

[3] Greg Hamerly and Charles Elkan. Learning the k in k-
means. In Advances in Neural Information Processing Sys-
tems (NIPS), 2004. 1, 2

[4] Dan Pelleg and Andrew Moore. X-means: Extending k-
means with efficient estimation of the number of clusters.
In International Conference on Machine Learning (ICML),
2000. 1, 2

[5] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A Unified Embedding for Face Recognition and
Clustering. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 1, 3, 4, 5

[6] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
Networks for Few-shot Learning. In Advances in Neural
Information Processing Systems (NIPS), 2017. 1, 3, 4, 5

[7] Makarand Tapaswi, Omkar M. Parkhi, Esa Rahtu, Eric Som-
merlade, Rainer Stiefelhagen, and Andrew Zisserman. Total
Cluster: A person agnostic clustering method for broadcast
videos. In Indian Conference on Computer Vision, Graphics
and Image Processing (ICVGIP), 2014. 1

[8] Baoyuan Wu, Siwei Lyu, Bao-Gang Hu, and Qiang Ji. Si-
multaneous Clustering and Tracklet Linking for Multi-face

https://github.com/makarandtapaswi/BallClustering_ICCV2019
https://github.com/makarandtapaswi/BallClustering_ICCV2019

Thresh BBT BUFFY
Set S1E1 S1E2 S1E3 S1E4 S1E5 S1E6 S5E1 S5E2 S5E3 S5E4 S5E5 S5E6

#Ch 8 6 26 28 25 37 13 22 15 32 38 45
Contrastive Loss [1]

train 374 (40.6) 382 (41.0) 411 (52.5) 443 (51.7) 341 (54.3) 629 (56.7) 605 (48.1) 721 (55.0) 862 (46.8) 694 (53.5) 608 (53.7) 725 (57.9)
val 14 (62.5) 13 (63.7) 17 (61.8) 22 (65.6) 19 (71.4) 32 (55.7) 22 (61.0) 30 (53.9) 26 (58.2) 29 (53.4) 29 (53.6) 27 (52.0)

Triplet Loss [5]
train 28 (65.5) 31 (63.4) 38 (74.6) 44 (74.1) 39 (78.2) 72 (68.3) 64 (65.0) 73 (64.9) 77 (60.1) 67 (63.6) 66 (69.4) 79 (68.4)
val 9 (88.1) 12 (71.2) 15 (79.8) 16 (76.7) 13 (85.8) 23 (69.3) 23 (73.6) 24 (64.2) 25 (66.2) 22 (63.6) 23 (67.9) 26 (65.5)

Prototypical Loss [6]
train 19 (74.6) 25 (69.3) 35 (77.4) 39 (76.6) 27 (86.6) 63 (73.9) 50 (70.7) 55 (69.7) 43 (67.8) 60 (69.7) 63 (72.7) 65 (74.3)
val 12 (82.3) 15 (75.1) 22 (83.7) 28 (80.3) 18 (91.4) 41 (74.3) 32 (74.2) 32 (71.0) 20 (76.2) 35 (70.5) 40 (76.6) 36 (73.5)

Table 5. Choosing the HAC threshold on train vs. validation set. Showing the number of predicted clusters and NMI. Ideal number of
clusters is presented in the first row. Note how it is beneficial to have a separate validation set, as overfitting on training can lead to selection
of smaller thresholds.

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

Figure 1. NMI and WCP vs. number of clusters for BBT-S1E1 to S1E6 (left to right, top to bottom). Circles indicate operating points (i.e.
number of predicted clusters for the methods), our method uses the HAC threshold 4b, while all others are using the threshold tuned to give
66 clusters on the validation set. Best seen in color.

Tracking in Videos. In International Conference on Computer
Vision (ICCV), 2013. 1

[9] Baoyuan Wu, Yifan Zhang, Bao-Gang Hu, and Qiang Ji.
Constrained Clustering and its Application to Face Clustering
in Videos. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2013. 1
[10] Shijie Xiao, Mingkui Tan, and Dong Xu. Weighted Block-

sparse Low Rank Representation for Face Clustering in
Videos. In European Conference on Computer Vision (ECCV),
2014. 1

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

0 20 40 60 80 100

Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

W
C

P

Base CNN

CrossEntropy

Contrastive

LDML

Triplet

Prototypical

BCL (Ours)

GT

Figure 2. NMI and WCP vs. number of clusters for BUFFY-S5E1 to S5E6 (left to right, top to bottom). Circles indicate operating points (i.e.
number of predicted clusters for the methods), our method uses the HAC threshold 4b, while all others are using the threshold tuned to give
66 clusters on the validation set. Best seen in color.

[11] Shun Zhang, Yihong Gong, and Jinjun Wang. Deep Metric
Learning with Improved Triplet Loss for Face Clustering in
Videos. In Pacific Rim Conference on Multimedia, 2016. 1

[12] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou

Tang. Joint Face Representation Adaptation and Clustering in
Videos. In European Conference on Computer Vision (ECCV),
2016. 1

Figure 3. Clusters created by triplet loss (TRI, top), prototypical loss (PRO, middle), and BCL (bottom) on BBT-S1E2. The correct number
of clusters is 6.

Figure 4. Clusters created by triplet loss (TRI, top), prototypical loss (PRO, middle), and BCL (bottom) on BUFFY-S5E3. The correct
number of clusters is 15.

