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This supplementary material provides additional experi-
mental results and details. We begin by evaluating the effect
of the number of attributes used for training on the model’s
few-shot performance in Section 1. Next, we explore the ef-
fect of plugging our compositional representations into ex-
isting few-shot learning methods, such as Prototypical Net-
works [4] and Matching Networks [5], as well as the effect
of data augmentation on these methods in Section 2. We
then provide a qualitative analysis of the learned representa-
tion using Network Dissection [7] in Section 3. In Section 4
we demonstrate how to apply our proposed regularization to
deeper network architectures. Finally, we visualize the at-
tributes used in our experiments on ImageNet together with
their hierarchical structure in Sections 5, and provide addi-
tional implementation details in Section 6.

1. Effect of the Number of Attributes

One of the main concerns with our proposed approach
is that obtaining attribute supervision can be expensive in
practice. To partially mitigate it, we study the effect of
the number of attributes used in training on the model’s
few-shot learning performance. To this end, we sample
75/50/25/15/5% of the attributes on CUB and SUN at ran-
dom and train our models using these subsets with the soft
constraint and orthogonality regularization. The results on
the novel categories are presented in Figures 1 and 2, re-
spectively. Encouragingly, the performance decreases only
slightly with the number of attributes. In particular, with
only 25% of the original attributes on CUB and 50% on
SUN (which correspond to 34 and 45 attributes, respec-
tively), the performance hardly changes. Moreover, we
achieve noticeable improvements over the 0-attribute base-
line by using as few as 5 attributes on SUN. This result
strengthens our claim that the proposed approach can im-
prove the performance of few-shot learning methods with
only a small annotation overhead.
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Figure 1. Evaluation of the effect of the number of attributes on the
model’s performance on the novel categories of the CUB dataset.
Our approach provides significant improvements over the baseline
even with as few as a quarter of the attributes.
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Figure 2. Evaluation of the effect of the number of attributes on the
model’s performance on the novel categories of the SUN dataset.
In this case, half of the original number of attributes is enough to
achieve comparable improvements over the baseline.

2. Additional Analysis of Existing Few-Shot
Learning Methods

In the main paper, we have demonstrated that a simple
cosine classifier learned on top of a frozen CNN, which
was trained with our compositionality regularization, leads
to state-of-the-art results on three datasets, outperforming
more complex existing few-shot classification models, such
as Protoypical Networks [4] and Matching Network [5]. It
is natural to ask whether training these models with our
compositional representation would lead to superior results.
To answer this question, we train the CNN backbone on the
base categories with a linear classifier and the composition-
ality regularization. On top of the compositional feature,
we learn these few-shot models as described in the main
paper. We report the results on the novel categories of the
CUB-200-2011 dataset in Table 1.

We observe that using compositional representations in-
deed leads to improved performance for both Prototypical
Networks and Matching Networks in almost all the settings.
The improvements for Prototypical Networks are marginal.
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Novel
1-shot 2-shot 5-shot

PN 43.2 54.3 67.8
PN + data aug 44.0 54.8 68.1
PN w/ comp 41.5 55.0 68.4
PN w/ comp + data aug 42.2 55.7 68.7
MN 48.5 57.3 69.2
MN + data aug 49.3 57.9 69.7
MN w/ comp 50.9 59.5 71.6
MN w/ comp + data aug 51.6 59.9 72.0
Linear w/ comp 47.0 60.0 74.0
Cos w/ comp 52.5 63.6 73.8
Cos w/ comp + data aug 53.6 64.8 74.6

Table 1. Incorporating our compositional representations into ex-
isting few-shot classification models : top-5 accuracy on the novel
categories of the CUB dataset. ‘PN’: Prototypical Networks, ‘PN
w/ comp’: Prototypical Networks with our compositional repre-
sentation, ‘MN’: Matching Networks, ‘MN w/ comp’: Match-
ing Networks with our compositional representation, ‘Linear w/
comp’: our compositional representation with a linear classifier,
‘Cos w/ comp’: our compositional representation with a cosine
classifier. The variants trained with data augmentation are marked
with ‘+ data aug’.

The effect of compositional representations for Matching
Networks is more pronounced, allowing them to outperform
the linear classifier in the 1-shot evaluation setting. How-
ever, our cosine classifier remains superior to the few-shot
learning methods. In addition, compared with our approach,
data augmentation has a less effect on the performance im-
provement of traditional few-shot learning methods. Our
approach again consistently outperforms the baselines with
data augmentation. These experiments not only confirm the
surprising effectiveness of the cosine classifier observed in
the main paper, but also show that the proposed composi-
tional representations can generalize to other scenarios and
classification models.

3. Qualitative Analysis of Compositional Rep-
resentations

We now qualitatively and quantitatively analyze the
learned representations using Network Dissection: a frame-
work for studying the interpretability of CNNs proposed by
Zhou et al. [7]. They first collect a large dataset of images
with pixel-level annotations, where the set of labels spans
a diverse vocabulary of concepts from low-level (e.g., tex-
tures) to high-level (e.g., object and scene categories) con-
cepts. They then probe each unit in a pre-trained CNN by
treating it as a classifier for each of these concepts. If a
unit achieves a score higher than a threshold for one of the
concepts, it is assumed to capture the concept. The number
of internal units that capture some interpretable concepts is
then used as a measure of the interpretability of the network.

We compute this measure for the last layer of our net-
works (before the classification layer) for both the cosine
classifier baseline and the cosine classifier with our compo-

sitionality regularization trained on SUN397. We observe
that the baseline has 169 interpretable units out of 512,
capturing 92 unique concepts. For our proposed composi-
tional model, the number of interpretable units increases to
333 and the number of unique concepts increases to 119.
Clearly, the proposed regularization results in learning a
much more interpretable representation. To further analyze
its properties, we present the distribution of the interpretable
units for the baseline in Figure 3 and that for the proposed
model in Figure 4, grouped by the concept type. We observe
that our improvement in novel concepts mainly comes from
the scene and object categories.

Another interesting observation is that most of the new
interpretable units seem to be duplicates of the units that
already existed in the baseline model. This is due to a lim-
itation of the Network Dissection approach. Although the
vocabulary of concepts which this evaluation can identify
is relatively broad, it is still limited. Several different real-
world concepts thus end up being mapped to a single label
in the vocabulary. To illustrate this observation and further
analyze our approach, we visualize the maximally activat-
ing images for several units that are mapped by Network
Dissection to the category house in Figure 5. The figure
also shows attention maps of the units within each image.
The first two units, which are shared by the baseline and the
proposed model, seem to capture the general concepts of
a wooden house and a stone house. However, the
other three units, which are only found in the model trained
with the compositionality regularization, seem to capture
parts of the house, such as roof, window, and porch
(see attention maps). This observation further validates that
our proposed approach leads to learning representations that
capture the compositional structure of the concepts.

4. Effect of the Network Depth
Up till now we used a ResNet-10 backbone for all the ex-

periments. In this section, we study the generalizability of
the proposed compositionallity regularization to deeper net-
work architectures. We conduct these experiments on the
SUN397 dataset due to its large size and high quality of the
attribute annotations. In Table 2 we compare the ResNet-10
model with cosine classifier to ResNet-18 and ResNet-34.
First of all, we notice that the improvements with respect
to the baseline due to compositionallity regularization are
diminishing as the network depth increases. Moreover, the
shallow ‘ResNet-10, Cos w/ comp’ model outperforms the
deeper variants. We analyze this behavior and observe that
the deeper models are able to learn attribute classifiers with-
out significantly modifying their representation. This can be
explained by the fact that the feature space of the last layer
of the deep networks has a higher representation capability.
We thus propose to adapt our regularization by applying it
not only to the last, but also to the intermediate layers of the



Novel All
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

ResNet-10, Cos 35.4 45.6 56.4 52.1 56.7 61.9
ResNet-10, Cos w/ comp 43.4 54.5 65.9 54.9 60.4 66.3
ResNet-18, Cos 37.7 47.5 58.8 53.7 58.0 63.3
ResNet-18, Cos w/ comp 41.2 51.6 63.0 55.5 60.6 66.3
ResNet-18, Cos w/ deep comp 43.9 54.7 65.7 56.5 62.0 67.6
ResNet-34, Cos 38.5 48.8 60.2 54.3 58.8 64.4
ResNet-34, Cos w/ comp 41.0 51.5 62.5 56.1 60.9 66.3
ResNet-34, Cos w/ deep comp 43.1 53.7 65.7 57.0 62.1 68.2

Table 2. Evaluation of deeper architectures: top-5 accuracy on the
novel and all (i.e., novel + base) categories of the SUN dataset.
‘Cos’: the baseline with a cosine classifier, ‘Cos w/ comp’: our
proposed compositional representation with a cosine classifier,
‘Cos w/ deep comp’: our proposed compositional representation
with regularization applied to intermediate layers of the network.

network. In practice, we apply it to the outputs of all the
ResNet blocks starting from the block 9. This new variant,
denoted as ‘Cos w/ deep comp”, achieves improvements
over the baseline for ResNet-18 and ResNet-34, which is
comparable to those of ‘Cos w/ comp’ for ResNet-10. Such
results confirm that our proposed approach is indeed appli-
cable to deeper networks. The improvement is somewhat
smaller for the novel classes though; all the three models
perform approximately the same in this setting.

5. ImageNet Attributes
In Figure 6, we visualize the hierarchical structure of the

attributes which we defined for the 389 base categories in
the subset of ImageNet used in our experiments. Each node
(including non-leaf nodes) represents a binary attribute and
edges capture the parent-child relationships between the at-
tributes. These relationships are used in the annotation pro-
cess to prune irrelevant attributes (such as number of wheels
for a living thing) and thus save the annotator’s time. Note
that our annotated attributes might not be the perfect set
of attributes for ImageNet. Nevertheless, even with these
imperfect attributes, our compositionality regularization ap-
proach allowed us to achieve the state-of-the-art result.

6. Additional Implementation Details
Training Schedules. On ImageNet we use the setting
proposed in [3, 6], with a batch size of 256 and 90 training
epochs. The learning rate is decreased by a factor of 10 ev-
ery 30 epochs. On SUN397 we use the same batch size and
total number of epochs, but decrease the learning rate after
the first 60 epochs, and then again after 15 more epochs. On
CUB-200-2011, which is a much smaller dataset, we use a
batch size of 16 and train for 170 epochs. The learning rate
is first decreased by a factor of 10 after 130 epochs, and then
again after 20 more epochs. These schedules are selected on
the validation set.

Compositionality Regularization. On ImageNet the
trade-off hyper-parameter of the compositionality regular-

izer λ is set to 8, on SUN397 to 25, and on CUB-200-2011
to 15. The hyper-parameter of the orthogonality constraint
β is set to 0.001, 0.0025, and 0.00035 on the three datasets,
respectively. To select these values, we split the base cat-
egories in half, using one half as validation. The attribute
annotations are sparse, with around 10% of them being la-
beled as positive for any given image on average. Due to
this highly imbalanced distribution of training labels, all
the attribute classifiers learn to predict the negative labels.
To address it, we randomly sample a subset of the negative
attributes for every example in every batch to balance the
number of positive and negative examples.

Few-Shot Training. On ImageNet we train for 100 itera-
tions for both cosine and linear classifiers. On SUN397 we
train for 200 iterations for linear and 100 for cosine classi-
fier. On CUB-200-2011 we train for 100 iterations for lin-
ear and 40 for cosine classifier. To select these values, we
use the same split of the base categories discussed above,
and train until the top-5 performance on the validation cat-
egories stops increasing. We use the same setting to select
the optimal hyper-parameters for other methods.
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