Similarity-Preserving Knowledge Distillation: Supplementary Material

Frederick Tung^{1,2} and Greg Mori^{1,2} ¹Simon Fraser University ²Borealis AI

ftung@sfu.ca, mori@cs.sfu.ca

Output size	MobileNet-k		
112×112	$3 \times 3,32k$		
112×112	$3 \times 3 \text{ dw}, 32k$		
	$1 \times 1,64k$		
56×56	$3 \times 3 \text{ dw}, 64k$		
	$1 \times 1, 128k$		
56×56	$3 \times 3 \text{ dw}, 128k$		
	$1 \times 1, 128k$		
28×28	$3 \times 3 \text{ dw}, 128k$		
	$1 \times 1,256k$		
28×28	$3 \times 3 \text{ dw}, 256k$		
	$1 \times 1,256k$		
14×14	$3 \times 3 \text{ dw}, 256k$		
	$1 \times 1,512k$		
14×14	$3 \times 3 \text{ dw}, 512k$ $\times 5$		
14 × 14	$1 \times 1,512k$		
7×7	$3 \times 3 \text{ dw}, 512k$		
	$1 \times 1,1024k$		
7×7	$3 \times 3 \text{ dw}, 1024k$		
	$1 \times 1,1024k$		
1×1	average pool, 47-d fc, softmax		

Table 1. Structure of MobileNet networks used in transfer learning experiments. 'dw' denotes depthwise convolution. Downsampling is performed by strided 3×3 depthwise convolutions.

Output size	MobileNetV2-k		
112×112	$3 \times 3,32k$		
112×112	bottleneck(t = 1, c = 16k, n = 1)		
56×56	bottleneck(t = 6, c = 24k, n = 2)		
28×28	bottleneck(t = 6, c = 32k, n = 3)		
14×14	bottleneck(t = 6, c = 64k, n = 4)		
14×14	bottleneck(t = 6, c = 96k, n = 3)		
7×7	bottleneck(t = 6, c = 160k, n = 3)		
7×7	bottleneck(t = 6, c = 320k, n = 1)		
7×7	$1 \times 1,1280k$		
1×1	average pool, 47-d fc, softmax		

Table 2. Structure of MobileNetV2 networks used in transfer learning experiments. The notation 'bottleneck(t,c,n)' denotes a group of bottleneck residual blocks with expansion factor t,c output channels, and n repeated blocks. Downsampling is performed by strided 3×3 depthwise convolution in the first block of a group.

Output size	ShuffleNetV2-0.5	ShuffleNetV2-1.0	ShuffleNetV2-2.0	
32×32	$3 \times 3, 24$	$3 \times 3, 24$	$3 \times 3, 24$	
16×16	stage(c = 48, n = 4)	stage($c = 116, n = 4$)	stage($c = 244, n = 4$)	
8 × 8	stage($c = 96, n = 8$)	stage($c = 232, n = 8$)	stage($c = 488, n = 8$)	
4×4	stage(c = 192, n = 4)	stage($c = 464, n = 4$)	stage($c = 976, n = 4$)	
4×4	$1 \times 1,1024$	$1 \times 1,1024$	$1 \times 1,2048$	
1 × 1	average pool, 10-d fc, softmax			

Table 3. Structure of ShuffleNetV2 networks used in CINIC-10 experiments. The notation 'stage(c, n)' denotes a group of ShuffleNetV2 building blocks with c output channels and n repeated blocks. Downsampling is performed by strided 3×3 depthwise convolutions in the first block of a group.