Similarity-Preserving Knowledge Distillation: Supplementary Material ## Frederick Tung^{1,2} and Greg Mori^{1,2} ¹Simon Fraser University ²Borealis AI ftung@sfu.ca, mori@cs.sfu.ca | Output size | MobileNet-k | | | |------------------|--|--|--| | 112×112 | $3 \times 3,32k$ | | | | 112×112 | $3 \times 3 \text{ dw}, 32k$ | | | | | $1 \times 1,64k$ | | | | 56×56 | $3 \times 3 \text{ dw}, 64k$ | | | | | $1 \times 1, 128k$ | | | | 56×56 | $3 \times 3 \text{ dw}, 128k$ | | | | | $1 \times 1, 128k$ | | | | 28×28 | $3 \times 3 \text{ dw}, 128k$ | | | | | $1 \times 1,256k$ | | | | 28×28 | $3 \times 3 \text{ dw}, 256k$ | | | | | $1 \times 1,256k$ | | | | 14×14 | $3 \times 3 \text{ dw}, 256k$ | | | | | $1 \times 1,512k$ | | | | 14×14 | $3 \times 3 \text{ dw}, 512k$ $\times 5$ | | | | 14 × 14 | $1 \times 1,512k$ | | | | 7×7 | $3 \times 3 \text{ dw}, 512k$ | | | | | $1 \times 1,1024k$ | | | | 7×7 | $3 \times 3 \text{ dw}, 1024k$ | | | | | $1 \times 1,1024k$ | | | | 1×1 | average pool, 47-d fc, softmax | | | Table 1. Structure of MobileNet networks used in transfer learning experiments. 'dw' denotes depthwise convolution. Downsampling is performed by strided 3×3 depthwise convolutions. | Output size | MobileNetV2-k | | | |------------------|------------------------------------|--|--| | 112×112 | $3 \times 3,32k$ | | | | 112×112 | bottleneck(t = 1, c = 16k, n = 1) | | | | 56×56 | bottleneck(t = 6, c = 24k, n = 2) | | | | 28×28 | bottleneck(t = 6, c = 32k, n = 3) | | | | 14×14 | bottleneck(t = 6, c = 64k, n = 4) | | | | 14×14 | bottleneck(t = 6, c = 96k, n = 3) | | | | 7×7 | bottleneck(t = 6, c = 160k, n = 3) | | | | 7×7 | bottleneck(t = 6, c = 320k, n = 1) | | | | 7×7 | $1 \times 1,1280k$ | | | | 1×1 | average pool, 47-d fc, softmax | | | Table 2. Structure of MobileNetV2 networks used in transfer learning experiments. The notation 'bottleneck(t,c,n)' denotes a group of bottleneck residual blocks with expansion factor t,c output channels, and n repeated blocks. Downsampling is performed by strided 3×3 depthwise convolution in the first block of a group. | Output size | ShuffleNetV2-0.5 | ShuffleNetV2-1.0 | ShuffleNetV2-2.0 | | |----------------|--------------------------------|---------------------------|---------------------------|--| | 32×32 | $3 \times 3, 24$ | $3 \times 3, 24$ | $3 \times 3, 24$ | | | 16×16 | stage(c = 48, n = 4) | stage($c = 116, n = 4$) | stage($c = 244, n = 4$) | | | 8 × 8 | stage($c = 96, n = 8$) | stage($c = 232, n = 8$) | stage($c = 488, n = 8$) | | | 4×4 | stage(c = 192, n = 4) | stage($c = 464, n = 4$) | stage($c = 976, n = 4$) | | | 4×4 | $1 \times 1,1024$ | $1 \times 1,1024$ | $1 \times 1,2048$ | | | 1 × 1 | average pool, 10-d fc, softmax | | | | Table 3. Structure of ShuffleNetV2 networks used in CINIC-10 experiments. The notation 'stage(c, n)' denotes a group of ShuffleNetV2 building blocks with c output channels and n repeated blocks. Downsampling is performed by strided 3×3 depthwise convolutions in the first block of a group.