
Mod Acc rattr rrest Vrest

original 0.94 0.4 0.11 0.01
two enc 0.15 0.32 0.24 0.07
one dec 0.49 0.71 0.04 0.02

k=16 0.14 0.8 0.5 0.25
d=64 0.75 0.61 0.42 0.01

Table 3: Ablation study for digit rotation: two encoders in-
stead of single shared encoder, non-shared decoder, smaller
rotation embedding (same overall embedding size) and two
times reduced dimensionality of both embeddings.

Model Attribute J syn
attr J syn

rest Jgen
attr Jgen

rest

PuppetGAN
Rot 0.05 2.2 0.03 0.32

CycleGAN 0.05 0.28
PuppetGAN† 0.06 108 +∞ +∞
PuppetGAN

Size 0.27 0.78 0.24 0.04
CycleGAN 0.20 0.07
PuppetGAN† 0.90 0.92 0.27 0.05

Table 4: For moderate discrepancies in attribute distribu-
tions, AoI in generated images followed the distribution of
AoI in the real domain.

6. Supplementary

Please take a look at our video demonstration available
at http://bit.ly/iccv19_pupgan and in the attached
MP4 file (x264 codec). More images with more detailed
experiments on all datasets are given below.

6.1. Additional Motivating Examples

A single “emerging” attribute of a complex simulation
often can be randomly perturbed (or fixed) without ex-
plicitly measuring it. As an example, in an algorithm
for synthesizing vascular tree-like structures proposed by
Hamarneh and Jassi [2010], global parameters are speci-
fied ahead of time, but local topology is determined pseudo-
randomly using a user-provided seed. A label-based method
would require an explicit numeric representation of the tree
topology, whereas our approach would only need to know
which samples used the same random seeds. In general, our
approach seems to better fit procedural pseudo-random data
models, often used to model natural phenomena. Or if the
scene contains multiple objects, representing their attributes
(e.g. positions and colors of a variable number of circles) in
a way that is invariant to their permutations is still an open
problem [Zaheer et al 2017, Wagstaff et al 2019] - this issue
does not arise in a triplet-based approach.

6.2. Error Case Analysis

Two major sources of errors in attribute manipulation are
naturally coupled attributes in real data and mode collapse
in attributes with multimodal distributions.

1. Since MNIST digit classes have different distribu-
tions of inclination, keeping digit’s class label constant
while rotating it is difficult (8s rotated too counter-
clockwise sometimes turn into 3s); the same reasoning
applies to keeping subject’s mouth open while it moves
away from the microphone.

2. If an attribute’s distribution is multimodal with one
mode dominating the other, GAN losses induce mode
collapse in generators, i.e. make them handle more fre-
quent attribute combinations at the cost of rarer ones.

3. Our experiments suggest that the proposed regulariz-
ers help considerably in combating both issues, but
over-regularization leads to excessive “unification” of
model outputs, e.g. more subtle attributes of digits
(stroke, handwriting style) are less preserved during
manipulation than more vivid attributes (size, rotation,
position). For example, removal of the cycle attribute
losses led to more distinct outputs for real inputs with
different styles, but hurt robustness to degenerate solu-
tions. Practitioners are encouraged to trade-off output
diversity and manipulation precision on case-by-case
basis by varying regularization parameters.

6.3. Implementation details.

Architecture. We used the “CycleGAN resnet” encoder
(padded 7x7 conv followed by two 3x3 conv with stride 2 all
with relus), followed by six residual conv blocks (two 3x3
convs with relus) a fully-connected bottleneck of size 128
and a pix2pix decoder (two bi-linear up-sampling followed
by a convolution). We used LS-GAN objective in all GAN
losses. It generally follows the architecture of CycleGAN
implementation provided in the tfgan package1.

Training. We optimized the entire loss jointly with re-
spect to all encoder-decoder weights and then all discrimi-
nator losses in two consecutive iterations of the Adam opti-
mizer with α = (2e-4, 5e-5) learning rates with polynomial
decay and β = 0.5. A model trained by updating differ-
ent losses wrt different weights independently in alternating
fashion did not converge, so all generator and discriminator
losses must be updated together in two large steps. We also
added Gaussian instance noise to each image used in dis-
entanglement and attribute cycle losses to improve stability
during training. We added stop gradient op after the appli-
cation of CB in the second attribute cycle loss and instance

1 https://www.tensorflow.org/api_docs/python/tf/
contrib/gan/CycleGANModel



noise to all intermediate images to avoid the “embedding”
behaviour.

We purposefully avoid constraining embeddings them-
selves, e.g. penalizing Euclidean distances between embed-
ding components of images that are known to share a par-
ticular attribute, as such penalties often cause embedding
magnitudes to vanishing.

Hyperparameters. The reasonable choice of loss
weights we used is given below. We did not perform any
large-scale hyperparameter optimization, just tried a couple
of combinations, the Lrest weight required few (2-3) man-
ual tuning attempts to balance Lattr, (i.e. tried 1 then 5 then
3).

Ltotal = 10 · Lrec + 10 · Lcyc + 5 · Lattr + 3 · Lrest+

+
∑

K1,K2,K3

∑
x∈K1,y∈K2

L(K3)
GAN (CK3

(x, y))

Metrics. The quality of attribute isolation can also be
evaluated by estimating mutual information between at-
tribute values and parts of embeddings that should or should
not encode it [8]; we do not explicitly penalize our model
for embedding extra information as long as decoder learns
to ignore it, so this metric was not useful in our case.

Related methods. In related experiments
we used a modified DiDA implementation from
https://github.com/yangyanli/DiDA/ in
both last and best training modes, MUNIT from
https://github.com/NVlabs/MUNIT and
cycle-consistent VAE https://github.com/
ananyahjha93/cycle-consistent-vae.

6.4. Extended Results

“Saturated” inputs. To clarify, by “model saturates”
we mean that if we pass synthetic inputs with the AoI value
beyond what we used during training, model outputs rea-
sonable “highest” or “lowest” output for respective domains
instead of breaking (it could, since inputs are not typical).

Digits. You can find results for USPS in Figures 7 and
8, model did not manage to disentangle rotation in USPS
probably due to the lack of thereof.

300-VW. In addition to the attached video, static exam-
ples of manipulated faces can be found in Figures 9, 10,
11 and 12. As pointed in the main paper, model properly
preserves orientation and expression of the real input, and
mouth expression of the synthetic input, and completely dis-
cards everything else.

YaleB. One can find more examples in Figures 13, 14,
15, 16 and 17. Identities of real inputs are preserved most
of the time (as a reminder, all YaleB images were combined
into a large single domain with no identity labels, so the
model had to learn to disentangle and preserve identity). In
cases when too little light is available in the real scene, the
model “hallusinates” an “average” identity details. When

model is asked to “imagine” lighting conditions that were
not present in YaleB, but present in the synthetic dataset,
some identity details are corrupted.

Synthetic faces. In Figure 18 we present more examples
of outputs of a model trained to disentangle lighting across
synthetic identities. “Dot artifacts” disappear if model is
trained long enough.

Color blind and print friendly. An alternative version
of Figure 4 is given in Figure 19.
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Figure 7: Rotation was not disentangled, probably due to the lack thereof in USPS naturally.

Figure 8: Size disentangled in USPS digit using synthetic renders.
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Figure 9: More random examples for an identity from 300-VW dataset with mouth expression manipulated using our model.
Two first and two last rows are “saturated” examples.
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Figure 10: More random examples for an identity from the 300-VW dataset with mouth expression manipulated using our
model. Two first and two last rows are “saturated” examples.
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Figure 11: More random examples for an identity from the 300-VW dataset with mouth expression manipulated using our
model. Two first and two last rows are “saturated” examples.
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Figure 12: More random examples for an identity from the 300-VW dataset with mouth expression manipulated using our
model. Two first and two last rows are “saturated” examples.
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Figure 13: More random examples for a single identity from the YaleB dataset with lighting expression manipulated using
our model.
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Figure 14: More random examples for a single identity from the YaleB dataset with lighting expression manipulated using
our model.
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Figure 15: More random examples for a single identity from the YaleB dataset with lighting expression manipulated using
our model.
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Figure 16: More random examples for a single identity from the YaleB dataset with lighting expression manipulated using
our model.
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Figure 17: More random examples for a single identity from the YaleB dataset with lighting expression manipulated using
our model.
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Figure 18: More random examples for disentanglement of spherical harmonics across synthetic identities.
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Figure 19: (A color blind and print friendly version). Supervised losses jointly optimized during training of the PuppetGAN.
When combined, these losses ensure that the “attribute embedding” (green capsule without a border) affects only the attribute
of interest (AoI) in generated images, and that the “rest embedding” (purple capsule with a bold border) does not affect the
AoI in generated images. When trained, manipulation of AoI in real images can be performed by replacing their attribute
embedding components. Unsupervised (GAN) losses are not shown in this picture. An example at the top right corner
illustrates sample images fed into the network to disentangle mouth expression (AoI) from other face attributes in real faces.
Section 3 provides more details on the intuition behind of these losses.


