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Abstract

This document contains additional visual exam-
ples/demonstrations and few additional explanations that
were omitted from the main text due to page limits. In the
first section, we show various kinds of additional results:
1) for the face-detection experiment; 2) visual comparisons
with other methods on additional examples from the BSD
and SBD datasets (mentioned in the paper); 3) examples
showing the adaptation of K (i.e., the number of superpix-
els), to the image content; 4) visualization of the splits and
merges, 5) an illustration of the effect of o on splits and
merges, and thus on the eventual K. In the second section
we focus on the connectivity constraints and the parallelized
implementation we used for the label updates. In the last
section, we provide the equations for the sufficient stastics
and a closed form of the posterior updates mentioned in
section 4 in the paper.
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1. Additional Visual Results and Visual
Demonstrations of Splits and Merges

1.1. Face Detection Results

We show here additional results of the face-detection
downstream application experiment which was described in
our paper. For this experiment we used images of groups
of people from [12]. We counted the number of faces de-
tected by a state-of-the-art face detector [14] in each image.
Next, for each superpixel method, we created mean-color im-
ages, by coloring each superpixel with its mean color. Then,
we ran the face detector again, this time on the mean-color
images. For each method and its mean-color images, we
counted how many faces the detector found. Figs. 1, 2, 3,
and 4 demonstrate how BASS preserves more details com-
pared with the other methods, resulting in more interpretable
output images which in turn lead to higher face-detection
rates.

1.2. Additional Visual Comparisons on Images from
the BSD and SBD Datasets

Figures 5-14 contain additional comparisons between
BASS and the other methods.

1.3. Different Values of K4,

Figure 15 demonstrates how BASS adapts the number of
superpixels (K) to the image.

1.4. Visualization of Splits and Merges

Figures 16, 17 and 18 illustrate the splits and merges.

1.5. Visualizing the Effect of «

Figure 19 demonstrates the effect of different values of
a.



2. Connectivity, Simple Points, and Paralleliza-
tion

2.1. Connectivity and Simple Points

In this section we elaborate on the connectivity constraints
that were briefly mentioned in Sections 3 and 4 of the paper.
Following [6, 7], our approach is based on digital-topology
concepts. More specifically, we utilize the concept of simple
points [3], to ensure that our label updates do not break the
(simple-) connectivity of each superpixel.

Changing a label in a (topologically-) valid segmenta-
tion might break connectivity. A point whose label can
be changed without breaking connectivity is called a sim-
ple point. It can be shown that the answer to the question
whether a pixel is a simple point or not is a function of only
the labels of its neighbors in a 3 x 3 neighborhood when
considering simply-connected regions, or a 5 X 5 neighbor-
hood when considering connected regions. For more details,
see [0, 3].

In our approach, a pixel’s label can be changed only in the
case it is a simple point. For a binary segmentation (i.e., two
classes: “background” and “foreground”), a pixel is a simple
point if and only if changing its label does not change the
number of connected components (CC) in its neighborhood
for both classes. This ensures that each superpixel remains
a simply-connected region. An example of a simple-point
configuration and an example of a non-simple point config-
uration for the binary case (K = 2) are shown in Fig. 21.
Since checking whether a pixel is a simple point or not is a
function of only the surrounding 3 x 3 lattice, it can be com-
puted in a short constant time using a precomputed lookup
table containing all the possible 28 configurations.

In order to generalize to the non-binary case, we used
a one-versus-all approach, where the label in question is
considered as 1, and all other labels in the surrounding 3 x 3
lattice get the same label, 0. In other words, when we test
whether setting a certain label for the pixel in question will
retain connectivity, we consider all the other labels as the
same “background” label. Then, we use the binary-case
solution to determine if this point is simple or not. Notice
that the maximum number of candidate labels that a pixel
can get is the number of its adjacent neighbors, 4. Thus,
even in the non-binary case the test can be done in a constant
and short time.

We allow a pixel to change its label only if in the one-
versus-all it is determined to be a simple point. Meaning,
if the candidate labels are a, b, ¢, d, and only the a, b labels
passed the one-versus-all simple-point test, then the only
possible assignments the pixel can get would be a or b.

2.2. Parallelization

Despite the topology constraints, and following Freifeld
et al. [7], we utilized the fact that the simple-point test is

a function of only the 3 x 3 surrounding lattice to paral-
lelize our inference. However, while the overly-conservative
approach in [7] parallelized over N/9 of the pixels, we paral-
lelize over N/4 of the pixels (see Fig. 20), and thus achieve
better parallelization of the label updates.

3. Computing the Conditional Modes and the
Hastings Ratios

In this section we further explain some inference details
that were omitted from the paper due to space limits.

3.1. The Closed-form Solutions for the Conditional
Models

Recall that the priors we used are the Normal-Inverse
Wishart (NIW) prior and multivariate Normal-Inverse-
Gamma (NIG) priors. The key reason that the NIW and
NIG priors are used is that both are conjugate to the Gaus-
sian likelihood. Likewise, the Dirichlet-distribution prior is
conjugate to the Categorical likelihood. See [8] for more
details. Thus, the posteriors are of the same functional form
as the priors, and the updates from the priors to the pos-
teriors are given in closed form via sufficient statistics [8].
Particularly, the priors are:
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Finally, all these distributions above have well-known closed-
form expressions for their modes (which are the ones used
in the paper) where these modes depend on the posterior
updates above.

3.2. Hastings Ratios

The derivation of the Hastings ratios below is based on [5].
Note that what is referred below as a sub-superpixel corre-
sponds to a sub-cluster in their paper (which was unrelated
to superpixels). First, we compute the marginal likelihood
of both the color space with an NIG prior (Eq. (10)), and the
location space with NIW prior (Eq. (11)). Let j; , j,- denote
the proposed sub-superpixels created after splitting super-
pixel j. Let j; , jo denote the adjacent superpixels, while
Jj1,2 denotes the superpixel obtained by merging superpixels
J1 and j2. For a € j,ji, jr, j1, 2, 1,2, let x* = (xf, x2)
be the set of all measurements associated with the cluster of
interest. Let I'(+) denote the univariate gamma distribution,
and let T'5(+) denote the 2D multivariate gamma distribution.
The marginal likelihood [8] of x® is
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(where all the hyperparamters in these three equations are
those associated with the cluster of interest).

We are now in position to compute the Hastings ratios for
splits (Eq. (12) below) and merges (Eq. (13) below). During
the inference iterations, these ratios are used to determine
if applying a split or a merge explains the data better than
the current state. To compute these ratios, we first compute,

using Eq. (9), the marginal likelihoods for the superpixel
which is a candidate for a split, for its subclusters, for the the
two superpixels which are candidates to be merged together,
and for the proposed merged superpixel. Adapting the results
from [5] to the choice of our priors (NIW and NIG), these
ratios are:
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Figure 1: Example face-detection results using the SP mean colors. All methods were initialized, and ended with, K ~ 1100.
Image taken from WIDER-face dataset [12]. From left to right, first row: SLIC [1], re-SEEDS [ 1]; second row: ETPS [13],
TSP [6]; third row: FSCSP [7], BASS.



Figure 2: Example face-detection results using the SP mean colors. All methods were initialized, and ended with, K ~ 1100.
Image taken from WIDER-face dataset [12]. From left to right, first row: SLIC [1], re-SEEDS [11]; second row: ETPS [13],
TSP [6]; third row: FSCSP [7], BASS.



Figure 3: Example face-detection results using the SP mean colors. All methods were initialized, and ended with, K ~ 1100.
Image taken from WIDER-face dataset [12]. From left to right, first row: SLIC [1], re-SEEDS [ 1]; second row: ETPS [13],
TSP [6]; third row: FSCSP [7], BASS.



Figure 4: Example face-detection results using the SP mean colors. All methods were initialized, and ended with, K ~ 1100.
Image taken from WIDER-face dataset [12]. From left to right, first row: SLIC [1], re-SEEDS [ 1]; second row: ETPS [13],
TSP [6]; third row: FSCSP [7], BASS.



Figure 5: A visual comparison of SP boundaries overlaid over original images. All methods were initialized, and ended with,
K = 150. Image taken from BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [1 1], ETPS [13]; second
row: TSP [6], FSCSP [7], BASS.




Figure 6: A visual comparison of SP means. All methods were initialized, and ended with, K = 150. Image taken from
BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [1 1], ETPS [13]; second row: TSP [6], FSCSP [7],
BASS.




Figure 7: A visual comparison of SP boundaries overlaid over original images. All methods were initialized, and ended with,
K = 150. Image taken from BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [1 1], ETPS [13]; second
row: TSP [6], FSCSP [7], BASS.




Figure 8: A visual comparison of SP means. All methods were initialized, and ended with, K = 150. Image taken from
BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [1 1], ETPS [13]; second row: TSP [6], FSCSP [7],
BASS.
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Figure 10: A visual comparison of SP means. All methods were initialized, and ended with, K = 180. Image taken from
BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [1 1], ETPS [13]; second row: TSP [6], FSCSP [7],
BASS.



Figure 11: A visual comparison of SP boundaries overlaid over original images. All methods were initialized, and ended
with, K = 250. Image taken from BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [ 1]; second row:
ETPS [13], TSP [6]; third row: FSCSP [7], BASS.



Figure 12: A visual comparison of SP means. All methods were initialized, and ended with, K = 250. Image taken from
BSDS500 dataset [2]. From left to right, first row: SLIC [1], re-SEEDS [11]; second row: ETPS [13], TSP [6]; third row:
FSCSP [7], BASS.



Figure 13: A visual comparison of SP boundaries overlaid over original images. All methods were initialized, and ended with,
K = 250. Image taken from SBD dataset [9]. From left to right, first row: SLIC [1], re-SEEDS [ 1]; second row: ETPS [13],
TSP [6]; third row: FSCSP [7], BASS.



Figure 14: A visual comparison of SP means. All methods were initialized, and ended with, K = 250. Image taken from SBD
dataset [9]. From left to right, first row: SLIC [1], re-SEEDS [ 1]; second row: ETPS [13], TSP [6]; third row: FSCSP [7],
BASS.
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Figure 15: Adapting K to the image content: BASS, when applied to both images with Ky = 550 and the same hyperpara-
maters, converged to a different Kg,,,) in each image. Top to bottom: superpixel boundaries; superpixels colored by their

mean colors; original images (taken from [4]).
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(a) - Before Split (b) - After Split (c) - Before Split (d) - After Split

Figure 16: Visualization of the split step. (b), (d) illustrate the superpixels one iteration after (a), (c), respectively. Between (b)
and (c) there are few iterations and a few merges. In the figure, there are both vertical and horizontal splits in the foreground of
the image. The process described in the figure repeats itself till convergence (not shown here).



(a) - Before Merge (b) - After Merge (c) - Before Merge (d) - After Merge

Figure 17: Visualization of the merge step. (b), (d) illustrate the superpixels one iteration after (a), (c), respectively. Between
(b) and (c) there are few iterations and a few splits. The process described in the figure repeats itself till convergence (not
shown here).



Figure 18: An example of the splitting process. We demonstrate the split of the same superpixel presented in red, which has an
irregular shape, making it hard to split while maintaining connectivity, once in the horizontal case (left column) and once in the
vertical one (right column). The first and second rows represent the distance of each pixel from the centers ¢j , ¢f respectively,
as a heat map; the colder the color the closer the pixel to the center. Each pixel is associated with its new sub-superpixel by
taking the minimal distance from ¢ and ¢f . The last row illustrates the superpixel after the split. By alternating between

horizontally and vertically BASS gained the flexibility in superpixels’ shape that enables it to adhere to the boundaries of
small, complex objects.




Kfinal = 250SP Kanal = 6005P

Figure 19: An example demonstrating the effect of the hyper-parameter o used in (12), (13) on the numbers of splits and
merges. Increasing o encourages more splits and fewer merges, thus directly changes the final number of superpixels. Started
with Ky = 550, converged to a different Ky, in each image. Top row: superpixel boundaries; Bottom row: superpixels
colored by their mean colors. Original images (taken from [2]).



Figure 20: A visualization of the parallelization. The image is partitioned into 4 different sets such that each 2 x 2 block
includes one representative from each set (as is indicated by the colors). In each set, the labels (not showed here) are
conditionally independent of each other.

? ?
simple point non-simple point
(a) (b)

Figure 21: A simple-point test for the binary case. (a) The central pixel is a simple point [6, 3]: regardless what its label is, the
number of connected components in either color is unchanged (1 green, 1 orange). (b) The central pixel is a non-simple point:
its label affects, e.g., the number of the yellow connected components.
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