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This document is served as supplementary material for
our ICCV 2019 submission Adaptive Wing Loss for Robust
Face Alignment via Heatmap Regression. The document
consists of five sections. Section 1 provides more imple-
mentation details on the CoordConv with boundary coordi-
nates. Section 2 shows more detailed information about the
datasets we used in experiments. We performed evaluation
on the AFLW [13] dataset in Section 3. Additional ablation
studies are shown in Section 4, and some facial landmark
localization visualizations are included in Section 5.

1. Implementation Detail of CoordConv on
Boundary Information

In addition to original CoordConv [11], we add two co-
ordinate encoding channels with boundary information. A
visualization of this process is shown in Figure 1

Figure 1: CoodConv with Boundary Information. X
Boundary and Y Boundary are generated from X coordi-
nate channel and Y coordinate channel respectively by a bi-
nary mask created from boundary prediction from the previ-
ous Hourglass module. The mask is generated by threshold-
ing boundary prediction with a value of 0.05. (Best viewed
in color).

2. Datasets Used in Our Experiments
The COFW [2] dataset includes 1,345 training images

and 507 testing images annotated with 29 landmarks. This

dataset is aimed to test the effectiveness of face alignment
algorithms on faces with large pose and heavy occlusion.
Various types of occlusions are introduced and result in a
23% occlusion on facial parts in average.

The 300W [20] is widely used as a 2D face alignment
benchmark with 68 annotated landmarks. 300W consists of
the following subsets: LFPW [1], HELEN [10], AFW [26],
XM2VTS [14] and an additional dataset with 135 images
with large pose, occlusion and expressions called iBUG.
To compare with other approaches, we adopt the widely
used protocol described in [19] to train and evaluate our
approach. More specifically, we use the training dataset
of LFPW, HELEN, and the full AFW dataset as training
dataset, and the test dataset of LFPW, HELEN and the full
iBUG dataset as full test dataset. The full test dataset is
then further split into two subsets, the test dataset of LFPW
and HELEN is called the common test dataset, and iBUG
is called the challenge test dataset. There is also a 300W
private test dataset for the 300W contest, which contains
300 indoor and 300 outdoor faces. We also evaluated our
approach on this dataset.

The WFLW [22] is a newly introduced dataset with
98 manually annotated landmarks that constitutes of 7,500
training images and 2,500 testing images. In addition to
denser annotations, it also provides attribute annotations in-
cluding pose, expression, illumination, make-up, occlusion
and blur. The six different subsets can be used for analyzing
algorithm performance on subsets with different properties
separately. The WFLW is considered more difficult than
commonly used datasets such as AFLW and 300W due to its
more densely annotated landmarks and difficult faces with
occlusion, blur, large pose, makeup, expression and illumi-
nation.

For the LSP [8] dataset, we used original label from au-
thor’s official website12. Although images with original res-
olutions are also provided, we choose not to use them. Also,
we did not use re-annotated labels on LSP extended 10,000
training images from [17]. Note that occluded keypoints are
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annotated in LSP original dataset but not in LSP extended
training dataset. During training, we did not calculate loss
on occluded keypoints for LSP extended training dataset.
During training and testing, we did not follow [16] to crop
single person from images with multiple persons to retain
the difficulties of this dataset. Data augmentations is per-
formed similarly to training with face alignment datasets.

3. Evaluation on AFLW
The AFLW [13] dataset contains 24,368 faces with large

poses. All faces are annotated by up to 21 landmarks per
image, while the occluded landmarks were not labeled. For
fair comparison with other methods we adopt the protocol
from [24], which provides revised annotations with 19 land-
marks. The training dataset contains 20,000 images, the full
testing dataset contains 4,368 iamges. A subset of 1,314
frontal faces (no landmarks are occluded) are selected from
the full test dataset as the frontal test set.

Method Full(%) Frontal(%)
RCPRCVPR 13 [2] 3.73 2.87
ERTCVPR 14 [9] 4.35 2.75

LBFCVPR 14 [18] 4.25 2.74
CFSSCVPR 15 [23] 3.92 2.68
CCLCVPR 16 [25] 2.72 2.17
TSRCVPR 17 [12] 2.17 -

DAC-OSRCVPR 17 [6] 2.27 1.81
DCFEECCV 18 [21] 2.17 -

CPM+SBRCVPR 18 [4] 2.14 -
SANCVPR 18 [3] 1.91 1.85

DSRNCVPR 18 [15] 1.86 -
LABCVPR 18 [22] 1.85 1.62
WingCVPR 18 [5] 1.65 -

RCN+(L+ELT+A)CVPR 18 [7] 1.59 -
AWing(Ours) 1.53 1.38

Table 1: Mean error(%) on the AFLW testset

Evaluation results on the AFLW dataset are shown in
Table 1. For AFLW dataset, we created boundary with a
different scheme compared with Wuet al. [22] since insuffi-
cient landmarks are provided to generate all 14 boundary
lines. We only use landmarks to generate left/right eye-
brow, left/right eye line and noise bottom line. Even though
we only have limited boundary information from 19 land-
marks, our method is able to outperform the state-of-the-art
methods in a large margin, which prove the robustness of
our method to faces with large poses.

4. Additional Ablation Study
4.1. Effectiveness of Adaptive Wing loss on Training

Table 2 shows the effectiveness of our Adaptive Wing
loss compare with MSE in terms of training loss w.r.t. the
number of training epochs. Model trained with the Adaptive

PPPPPPPPLoss
Epoch

10 50 100 150 200

MSE all 0.018 0.018 0.014 0.014 0.014
AW all 0.018(-) 0.013(↓27%) 0.011(↓21%) 0.010(↓28%) 0.010(↓28%)
MSE fg 1.17 1.25 0.95 0.94 0.92
AW fg 1.13(↓3%) 0.87(↓30%) 0.74(↓22%) 0.72(↓23%) 0.71(↓23%)

Table 2: Training loss comparison. For fair comparison,
the losses are evaluated with MSE. Model are trained with
original stacked HG without weight map. Subscript fg and
all stand for foreground pixels and all pixels respectively.

Wing loss is able to reduce the pixel-wise average MSE loss
for almost 30%, and more than 23% on foreground pixels.
Especially, this improvement comes at a mere 50 epochs,
showing that the AWing loss improves convergence speed.

4.2. Robustness of Adaptive Wing loss on datasets
with manually added annotation noise

We experimented our Adaptive Wing loss on the WFLW
dataset with manually added labeling noise. The dataset
is generated by randomly shifting S% of the inter-ocular
distances from P% of the points with a random angle.

P(%)/S(%) 0/0 10/10 20/20 30/30
AWing 4.65 4.64 4.66 4.86

Table 3: AWing on the WFLW dataset with noise, without
Weighted Loss Map, CoordConv and boundary.

4.3. Experiment on different number of HG stacks

We compare the performance of different number of
stacks of HG module (see details in Table 4). With reduced
number of HGs, the performance of our approach remains
outstanding. Even with only one HG block, our approach
still outperforms previous state-of-the-arts in all datasets ex-
cept the common subset and the full dataset of 300W. Note
that the one HG model is able to run at 120 FPS with Nvidia
GTX 1080Ti graphics card. The result reflects the effective-
ness of our approach on limited computation resources.

5. Result Visualization
For visualization purpose, some localization results are

shown in Figure 2 and Figure 3
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Figure 2: Result visualization 1. Row 1-2: AFLW dataset, row 3-4: COFW dataset, row 5-6: 300W dataset.



Figure 3: Result visualization 2. Row 1-2: 300W private dataset, row 3-4: WFLW dataset.


