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Acc.(%) clean FGSM CE1000 MI Ori-CW DF-l2
R-MC-LA+ 92.8 75.6 61.4 65.5 65.4 / 88.2 77.8
TRADES 84.9 61.1 56.4 58.0 81.2 81.6

Table 1: The classification accuracy against various white-
box attacks on CIFAR10. We use training budget εx = 4.

1. Introduction

First, we provide two more experiments on CIFAR10.
Then, we provide the results on CIFAR100 dataset. Next, to
validate our motivation, we compare the gradient magnitude
of different models. At last, we provide another heuristic
solution to the problem of generating adversarial labels.

2. Two More Experiments on CIFAR10

2.1. Against Other White-box Attacks

Table 1 shows the accuracy against other white-box at-
tacks. We compare with the winner, TRADES [6], in
NeurIPS18 Adversarial Vision Challenge. We use the de-
fault settings in the Cleverhands package to generate the at-
tacks. “MI” refers to the MI-FGSM method [2]. “Ori-CW”
refers to the original CW attack [1], and the two numbers re-
fer to two common sets of hyper-parameters: {const=100,
confid=0, lr=1e-1, max iter=1e2} / {const=100, confid=0,
lr=1e-2, max iter=1e3}. “DF-l2” refers to the DeepFool at-
tack with l2-norm [4]. We see that our models generally
outperform the baseline, except against the DeepFool at-
tack. We note that our network is smaller, and our training
method is an-order-of-magnitude faster1.

2.2. Effect of Number of Training Images

We vary the number of training images per class. The
results are shown in Table 2. This is aligned with the claim
in [5] that adversarial training requires more data than reg-
ular training.

1 [6] uses WRN-34, and 20-step PGD attack during training.

Acc.(%) clean FGSM CE20 CE100 CW100
R-MC-LA (5K) 90.7 69.6 55.3 53.8 52.8
R-MC-LA (2K) 85.6 56.1 42.8 41.1 40.2

R-MC-LA (0.5K) 73.3 33.7 25.1 24.5 24.0

Table 2: The classification accuracy of R-MC-LA models,
trained using different data size on CIFAR10. The number
in the parenthesis means the number of images per class.
We use εx = 8, β = 9.

Acc.(%) clean FGSM CE20 CE100 CW100
R-MC-LA (εx = 8) 68.7 30.5 23.2 22.7 20.6

R-MC-LA+ (εx = 8) 66.2 31.3 23.1 22.4 20.0
R-MC-LA9 (εx = 8) 68.7 33.7 23.1 22.0 20.1

R-MC-LA9+ (εx = 8) 68.2 36.9 26.7 25.3 22.1
Madry* 61.9 28.8 23.7 23.4 24.5

Table 3: The classification accuracy of R-MC-LA models
against white-box attacks on CIFAR100. The models are
trained using different perturbation budget. We use β = 11.

3. CIFAR100 Dataset

In this section we report the results against white-box
attacks on CIFAR100 [3] dataset. It has 100 classes, 50K
training images and 10K test images. In addition to the ba-
sic R-MC-LA models, we also try a slightly modified ver-
sion, denoted by R-MC-LA9. Specifically, when generating
the adversarial label, we distribute the εy to the top-9 non-
groundtruth classes with largest loss, instead of to all the
non-groundtruth classes. This modification brings several
percentage gain. The results are shown in Table 3. We see
that our models outperform the state-of-the-art on clean im-
age and against FGSM, and perform comparably on multi-
step attacks. We hypothesize that CIFAR100 is more diffi-
cult than CIFAR10 and SVHN for adversarial training be-
cause of much fewer images per class.

4. Gradient Magnitude

Table 4 provides the gradient magnitude results on three
datase. For CIFAR10 and SVHN, madry’s method is trained



CIFAR10 SVHN ImageNet
undefended madry ours undefended madry ours undefended madry ours

max 349.9 1.8 1.6 267.9 15.3 3.4 0.48 0.004 0.084
mean 2.3 0.022 0.0098 0.77 0.12 0.022 0.0044 0.000038 0.00014

Table 4: Comparison of gradient magnitude, ‖∇xL(x, y; θ)‖22, of undefended model, madry’s model, and our model, on three datasets
(averaged over all test / validation images). The gradient is taken w.r.t. the original image range [0, 255], instead of [-1, 1], so the numbers
are 127.5 times smaller than Table 2 in the paper. For CIFAR10 and SVHN, all models are run three times to average out randomness.

using PGD7-2 with budget 8 pixels. For ImageNet, madry’s
method is trained using PGD10-3 with budget 16 pixels.
From the table, we see that adversarially trained models,
including madry’s and ours, leads to much smaller gradi-
ent magnitude (one or two order-of-magnitude), compared
to undefended models. This correlates with our hypothe-
sis that there may be a link between small gradient mag-
nitude and adversarial robustness. Besides, we see that
madry’s and ours are comparable (particularly on CIFAR10
and SVHN). Note that although gradient magnitude con-
fidently distinguish undefended and adversarially trained
models, it is not a precise indicator of robustness between
adversrially trained models. Currently, only from the gra-
dient magnitude, we cannot confidently tell which one is
more robust. So we have to compare and report their accu-
racy. Finding precise indicator for adversarial robustness is
an active and unsolved research topic.

5. Another Solution to Generating Adversarial
Labels

In this section, we provide another heuristic solution to
the problem of generating adversarial labels

max
‖y′−y‖∞≤εy

L(x, y′; θ). (1)

Here the original groundtruth y is a one-hot vector, i.e.,
yc = 1 and yk = 0, k 6= c.

In the main paper, the heuristic is to distribute the εy to
non-groundtruth classes while keeping the share of the MC
class very small. Specifically, the share is proportional to
the gradient of each class subtracted by the minimal gradi-
ent (which corresponds to the MC class). Here, we propose
another simpler heuristic, which is that the share is directly
proportional to the respective gradient. We can then easily
obtain the formula

y′k =
εyvk∑
k 6=c vk

, k 6= c. (2)

Note that we use vk to denote ∇ykL(x, y; θ) for short. By
using the following condition

yc ≥ βmax
k 6=c

yk′ , (3)

Acc.(%) clean FGSM CE20 CE100 CW100
R-MC-LA (main) 90.8 69.3 54.6 52.9 51.9

R-MC-LA+ (main) 91.0 70.3 57.5 55.2 53.8
R-MC-LA (sup) 90.2 70.9 53.2 51.1 49.9

R-MC-LA+ (sup) 91.5 71.4 57.2 54.1 51.5

Table 5: The classification accuracy of the proposed R-MC-
LA models under various white-box attacks on CIFAR10.
The source models are trained using two solutions for gen-
erating the adversarial labels. We use β = 9 and εx = 8
during training and in evaluation.

we can solve for the largest budget εy

εy ≤
1

1 + βvmax∑
k 6=c vk

. (4)

Note that this solution is an exact application of gradient
ascent

y′k = yk + α∇ykL(x, y; θ), k 6= c, (5)

where

α =
1∑

k 6=c vk + βvmax
. (6)

We favor the solution used in the main paper over this
solution (2) for two reasons. Firstly, from the optimiza-
tion point of view, the solution in the main paper leads to
a higher (better) objective value for the maximization prob-
lem (1), because it distributes more shares to the classes
with larger gradient. Secondly, the solution in the main pa-
per leads to a smaller y′MC (proof given below). Note that
the adversarial image used in training is generated by the
MC targeted attack. Using a smaller y′MC will suppress
the network to predict large probability on the MC class,
thus better focusing on predicting large probability on the
groundtruth class. The results achieved by these two solu-
tions are shown in Table 5, where “main” refers to using
the solution in the main paper, and “sup” refers to using the
solution (2) in the supplementary material. We can see that
“main” is slightly better than “sup” against multi-step PGD
attacks.

Lastly we provide the proof. From the solution in the
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main paper, we have

y′MC,main =
γ∑

k 6=c vk − (n− 1)(vMC − γ) + β(vLL − vMC + γ)
.

(7)

From the solution (2), we have

y′MC,sup =
vMC∑

k 6=c vk + βvLL
. (8)

The sufficient and necessary condition of

y′MC,main < y′MC,sup (9)

is
(n− 1)vMC + βvMC <

∑
k 6=c

vk + βvLL, (10)

which is obviously true. This is because the left is smaller
than the right on both the first term and the second term
respectively.
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