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1. Supplemental Video

We have included a supplementary video in the follow-
ing link: https://youtu.be/TUootD36Xm0. We invite read-
ers to view this video for better visualizations of our quali-
tative results.

2. Qualitative results

Local predictions  Figure 5 shows a random selection
of results from our validation dataset of automatically-
generated manipulations. We conducted an experiment
where the PSNR change with respect to scaled versions of
the predicted flow field are shown over the validation set
(Figure 1). We can see that the highest PSNR gain is where
the scale factor is 1.0, which implies that our predicted flow
fields do not contain a multiplicative bias, that might result
from the regression loss.

Network visualization =~ We visualize our global classifier
using the class activation map method of Zhou et al. [9].
Figures 6, 7 show a random selection of class activation
maps of our global classifier. Note that our global classifier
model is able to achieve high accuracy (93.7%) despite the
mismatch between class activation maps and ground truth
flow. This suggests that the model may be able to pick up
other cues to differentiate between original and manipulated
images.

3. Robustness to corruptions

We tested the robustness of our model by perturbing the
low-level statistics of our validation set through common
corruptions such as lossy JPEG compression, blurring, and
printing and scanning physical prints. This offers three in-
teresting test cases, as we did train on JPEG compressed
images, did not train on blurring, and cannot train on res-
canned images due to the cost of dataset acquisition.

As shown in Fig. 2, the method with augmentation is
fairly robust to JPEG compression. Though we did not
train with blurring augmentations (as images are unlikely to
be intentionally blurred), training with other augmentations
helps increase resilience. However, with significant blur
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Figure 1: PSNR plots from our held-out validation subset. We plot
the average PSNRs of the unwarped image to the original (y-axis),
with respect to a multiplicative factor on the predicted flow field.
The error bars are the standard errors. In the ideal case, this PSNR
should peak at 1.0, the predicted flow.

(o > 4), performance degrades to chance levels. This in-
dicates that the classifier is relying on some high frequency
information, which is the main component attenuated by the
Gaussian filter.

Lastly, we also test the robustness of our classifier to
print rebroadcasting [ 1], testing on images that are printed,
and then re-digitized by a scanner (e.g., simulating the
task of identifying manipulations in magazine covers). We
used a Canon imageRunner Advance C3530i Multifunc-
tional copier and standard 8.5x11 inch paper. We ran-
domly selected 30 images each from the Flickr and Open-
Images sets. Classification performance drops from 94.2%
to 69.2% (standard error of 6.0%). While rebroadcasting
hurts performance, our model still detects manipulated im-
ages significantly more accurately than chance.

4. Generalization

We are interested in what cues in the images the model
learns to focus on, in order to detect warping. For exam-
ple, is the model looking at low-level image statistics (e.g.
resampling artifacts) or high-level cues (e.g. facial geomet-
ric inconsistencies)? This has larger implications for ex-
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Figure 2: Robustness to corruptions. Accuracy of global classification with JPEG, Gaussian blur, and after rescanning, with and without
data augmentation. (left) JPEG compression: a significant increase in robustness. Though unsurprising, as it is in our augmentation set, it
is important, as compression and recompression is commonly applied to images. (middle) Blur: although this is not in our augmentation
set, we observe a small increase in robustness. (right) Rescanning: a small increase in robustness. We corrupt by printing and rescanning a
subset of photos, a perturbation that cannot be reproduced during training

Global Local
Acc. AP APSNR 1I0U-3
Face / FAL 93.7 98.9 +2.69 0.43
Face/ X2face 64.7 74.0 +0.13 0.05
Noise / FAL 445 929 - 0.43
Noise / X2face 36.5 82.0 - 0.03
Natural / FAL 67.7 773 +0.12 0.05

Table 1: Generalization results. We tested the generalization of
our global and local models on four out-of-distribution dataset.
The top row (Face/FAL) contains the results of our original vali-
dation set for comparison.

ample in whether the model can detect warps only realiz-
able by FAL, or can it detect more general warping sce-
narios? To investigate, we evaluate our global and local
models in four different scenarios: (1) images composed
of noise, warped with FAL warps, (2) images composed of
noise warped with out-of-domain warps, (3) out-of-domain
natural images warped with FAL warps, and (4) portrait im-
ages warped with out-of-domain warps.

To generate out-of-domain warps, we randomly sampled
the latent space of the optical flow generator in the X2face
model [6] to generate warps. We note that although the
X2face model is trained to generate face-specific warps, the
warping field will not necessarily align with the portrait;
moreover, since a VAE loss is not included during X2face
training, sampling the bottleneck does not guarantee to have
realistic warping fields. However, empirically we observed
our sampling method generates smooth warping fields that
modifies the face in a “stochastic” fashion. That is, the
X2face warping field will not specifically change a face in a
meaningful way such as making someone’s smile bigger or
face smaller. On the other hand, for out-of-domain images
we collected natural images from random samples in Open
Images [4], which are not portrait images. Table 1 shows

Figure 3: Noise experiment setup. The Gaussian noise image
(left) and the face image (middle) are deformed with the same
warping field (right). Our model trained on faces can detect the
warped noise (if well-calibrated), but a model trained on noise can-
not detect the warped face.

the results.

Note that when there is a domain shift in warping field
(face/X2face) or image space (natural/FAL), the perfor-
mances of both models drop significantly although still per-
form above chance (50% Accuracy and 0 APSNR). More
interestingly, note that our global model is able to general-
ize to warped noise with FAL and X2face flows at a cer-
tain degree if well-calibrated (92.9, 82.0 AP), and our local
model generalizes specifically to FAL-warped noise. This
indicates they have learned low-level warping cues, while
the local model is more specific to FAL warping field statis-
tics. However, we trained global and local models solely on
noise warped with FAL flows and tested on our validation
set, and the models are only able to achieve 49.6% accuracy
and 28.28 EPE respectively. This suggests that our model
has learned low-level cues, but that low-level cues are not
sufficient: the face warping problem is much more difficult.

5. Additional data collection details

Figure 4 shows a sample of the manipulations in our
automatically-generated dataset. For each example photo,
we show all 6 random manipulations that were applied to it.

Collecting real face images  To obtain a diverse dataset
of faces, we aggregate images from a variety of sources.



First, we take all images from the Open Images dataset [4]
with the “human face” label. This dataset consists of hu-
mans in-the-wild, scraped from Flickr. We also scrape
Flickr specifically for portrait photography images. To iso-
late the faces, we use an out-of-the-box CNN-based face
detector from dlib [2] and crop the face region only. All
together, our face dataset contains 69k and 116k faces
from OpenImages and Flickr portrait photos, respectively,
of which approximately 65k are high-resolution (at least
700 pixels on the shortest side). We note that the our
dataset is biased toward Flickr users, who, on average, post
higher-quality photographs than users of other Internet plat-
forms. More problematically, the Flickr user base is pre-
dominantly Western. However, as our method is entirely
self-supervised, it is easy to collect and train with new data
to match the test distribution for a target application.

6. Implementation and training details

Flow consistency mask  Given the original image X ;¢
and manipulated image X,,,q4, we compute the flow from
original to manipulated and from manipulated to original
using PWC-Net [5], which we denote U,,, and U,,,, re-
spectively.

To compute the flow consistency mask, we transform
Uno from the manipulated image space into the original
image space, which is U,,, = T(Umo; Uom). We con-
sider the flow to be consistent at a pixel if the magnitude of
Ul.o + Uom is less than a threshold. After this test, pixels
corresponding to occlusions and ambiguities (e.g., in low-
texture regions) will be marked as inconsistent, and there-
fore do not contribute to the loss.

We take relative error of the flow consistency as the cri-
terion. For a pixel p,
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We take e = 0.1 and 7 = 0.85, then apply a Gaussian
blur with o = 7, denoted by G, and take the complement to
get the flow consistency mask M:

M=1- G(MinconsistEnt) (2)

Training details for local prediction networks = We use
a two-stage training curriculum, where we first train a per-
pixel 121-class classifier to predict the discretized warping
field. We round the flow values into the closest integer, and
assign class to each integer (u,v) value with a cutoff at 5
pixels. Therefore, we have u,v € {—5,—4,...,4,5}, i.e.
121 classes in total. We pretrained the model for 100k it-
erations with batch size 16. Our strategy is consistent to
Zhang et al. [8], which found that (in the context of coloriza-
tion) pretraining with multinomial classification and then

fine-tuning for regression gave better performance than just
training for regression directly.

The base-network of the regression model is initialized
with the pretrained model weights, and the other weights
are initialized with normal distribution with gain 0.02. We
train the models for 250k iterations with batch size 32.

Both models are trained with Adam optimizer [3] with
learning rate 10™4, 81 = 0.9, B = 0.999.

Training details for global classification networks ~ We
initialized the base-network of the DRN-C-26 [7] network
with the weights pretrained on the local detection task, and
fine-tuned it for the global classification task. We use the
Adam optimizer [3] with 8; = 0.9, 82 = 0.999, minibatch
size 32 and 16 for the low and high-res models, respec-
tively, and initial learning rate 10~%, reduced by 10x when
loss plateaus. The models are trained for 300k iterations on
135.4k original images and 812.4k modified images, where
the original images are sampled 6 x more frequently to bal-
ance the class distribution.
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Input Manipulations

Figure 4: A random sample of manipulations from our dataset. For each photo, we show all 6 random edits that we made. We note that
many of these modifications are subtle.
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Figure 5: Randomly selected results from our held-out validation dataset, showing the original, warped, and unwarped images. The
ground-truth and predicted flow fields, and the difference images between the manipulated and original image, and the unwarped and
original images (enhanced for visibility).
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Figure 6: Class activation maps on modified images. Numbers on the upper-left corners of the class activation maps are the modification
probability assigned by our model. For reference, we also include the ground truth flow, and our prediction of it.
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Figure 7: Class activation maps on randomly sampled original (unmodified) images. Numbers on the upper-left corners of the class
activation maps are the modification probability assigned by our model.



