
Sharpen Focus: Learning with Attention Separability and Consistency
Supplementary Material

Lezi Wang1, Ziyan Wu2, Srikrishna Karanam2, Kuan-Chuan Peng2,
Rajat Vikram Singh2, Bo Liu1, and Dimitris N. Metaxas1

1Rutgers University, New Brunswick NJ
2Siemens Corporate Technology, Princeton NJ

{lw462, lb507, dnm}@cs.rutgers.edu, {ziyan.wu, srikrishna.karanam, kuanchuan.peng, singh.rajat}@siemens.com

1. Implementation details
As noted in the main paper, our experiments contain

three parts: (a) generic image classification evaluation
on three datasets: CIFAR-100 [6], Caltech-256 [3] and
ILSVRC2012 [8], (b) fine-grained image classification
evaluation on the CUB-200-2011 [12] dataset, and (c)
multi-label image classification evaluation on the PASCAL
VOC 2012 [2] dataset. We perform experiments using
PyTorch [7] and NVIDIA Titan X GPUs. We do not search
in the hyperparameter space for the best hyperparameters
and instead use the same training parameters as those in
the corresponding baselines. Complete experimental details
about training and the five datasets we used are provided in
Table 1.

1.1. Generic image classification
CIFAR-100: The image is padded by 4 pixels on each

side, filled with 0 value resulting in a 40⇥40 image. A
32⇥32 crop is randomly sampled from an image or its hori-
zontal flip, with the per-pixel RGB mean value subtracted.
We adopt the same weight initialization method following
[4] and train the ResNet using Stochastic Gradient Descent
(SGD) [1] with a mini-batch size of 128. We use a weight
decay of 0.0005 with a momentum of 0.9 and set the initial
learning rate to 0.1. The learning rate is divided by 10 at
81 and 122 epochs. The training is terminated after 160
epochs.

Caltech-256: There is no official training/testing data
split. We follow the work in [3] to randomly select 25
images per category as the testing set and 30, 60 images
per category as training. We remove the last (257-th) cate-
gory “clutter,” keeping the 256 categories which describe
specific objects. We use VGG-19 [10] and ResNet-18 [4]
as the baseline models. For the training of both the base-
line and our proposed method, we use a weight decay of
0.001 with a momentum of 0.9 and set the initial learning
rate to 0.01. To speed up the model training, we adopt cyclic

cosine annealing [5] with a cycle of one to train the network
for 20 epochs.

ILSVRC2012: We conduct large-scale image clas-
sification experiments using the ImageNet ILSVRC2012
dataset [8]. The evaluation is conducted on the images of
the ILSVRC2012 validation set. We use ResNet-18 [4] as
the baseline model. We use SGD [1] with a mini-batch size
of 256 to train the network. The initial learning rate is set
as 0.1 and weight decay of 0.0001 with a momentum of 0.9.
The learning rate is divided by 10 at 30 and 60 epochs. The
training is terminated after 90 epochs.

1.2. Fine-grained image classification

We follow the training pipeline from [11] to choose
ResNet-50 and ResNet-101 as the baseline models. The
input images are resized to 448 ⇥ 448 for both training
and testing and we apply standard augmentation for training
data, i.e. mirror, and random cropping. The SGD [1] is used
to optimize the networks. The learning rate is decayed by
0.1 after 30 and 60 epochs.

1.3. Multi-class image classification

We use ResNet-18 with the Multi-Label-Soft-Margin
loss as our baseline model. Cyclic cosine annealing [5] with
the cycle of 1 is used to speed up the training. The total
number of training epochs is 20.

2. Multi-label image classification results
For PASCAL VOC 2012, besides the mean Average

Precision (mAP) shown in the main paper, we also provide
the results for each category in Table 2. We notice that
ResNet-18 guided by our ICASCAch supervision gives the
best performance in most of the categories, resulting in the
best overall mAP score. When using Grad-CAM [9] as the
attention guidance, the ICASCGrad�CAM also outperforms
the baseline method ResNet-18, which further validates



dataset CIFAR-100 [6] Caltech-256 [3] ILSVRC2012 [8] CUB-200-2011 [12] PASCAL VOC 2012 [2]

# classes 100 256 1000 200 20
image size 32⇥32 299⇥299 224⇥224 448⇥448 299⇥299
# images 60000 30607 ⇠1.3M 11788 15000

# training images 50000 7680/15360 1.2M 5994 5717
# testing images 10000 6400 50000 5794 5823

training batch size 128 16 256 10 16
weight decay 0.0005 10�3 10�4 10�4 10�3

momentum 0.9 0.9 0.9 0.9 0.9
initial learning rate 0.1 0.01 0.1 10�3 0.01
# training epochs 160 20 90 90 20
evaluation metric Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy Top-1 Accuracy mean Average Precision

Table 1: The details of the dateset and training parameters.

class\method ResNet18 + ICASCGrad�CAM + ICASCAch

aeroplane 95.16 96.33 96.85
bicycle 76.18 80.82 82.41

bird 92.92 94.69 95.17
boat 84.82 87.91 89.13

bottle 53.32 60.66 61.07
bus 89.81 91.73 92.25
car 77.41 80.11 81.74
cat 93.91 95.63 96.28

chair 68.53 73.04 73.69
cow 57.41 67.85 71.12

diningtable 67.35 73.07 73.64
dog 88.18 91.70 92.62

horse 73.58 80.89 84.21
motorbike 82.36 86.09 87.51

person 95.69 96.22 96.44
pottedplant 46.38 56.27 57.75

sheep 78.79 84.93 86.15
sofa 54.83 64.00 64.63
train 92.05 95.05 95.56

tvmonitor 80.07 85.32 85.24
mAP 77.44 82.12 83.17

Table 2: Categorical and mean Average Precision (mAP)
(%) for our PASCAL VOC 2012 image classification exper-
iment. The highest scoring entry in each row is shown in
bold.

the effectiveness of our proposed attention-driven learning
framework ICASC.

3. Additional qualitative results
We show additional qualitative results for our proposed

method in Figure 1 and Figure 2. Each figure shows four
examples, where for each example, we show the input
image and the ground-truth class in the first column, the
top-5 categorical attention maps for the baseline in the top
row of the adjacent columns, and those with our approach

in the bottom row. In Figure 1, where the images are in
high resolution, the baseline method is ResNet-18 and our
method is ResNet-18 + ICASCAch . In Figure 2, the base-
line method is ResNet-110 and our method is ResNet-110 +
ICASCAch . In all the figures, the ground-truth class atten-
tion map is marked using a red bounding box. There will be
no marked attention map if the ground-truth class is not in
the top-5 predictions. These figures show that our discrim-
inative attention achieves better attention separability, with
our model attending to regions that tell different categories
apart. On the other hand, we observe visual confusion
with the baseline, with high responses in the attention maps
located at similar spatial locations among different cate-
gories.

As can be seen from these figures, since discrimina-
tive attention is our principled learning objective, attention
responses given by our method across the top-5 categories
are more separable than those from the baseline method,
and our trained model is able to attend to semantically
discriminative parts of the ground-truth objects, resulting
in the better classification results. For example, in the
top left “cake” example in Figure 1, for both “cake” and
“fried egg,” the baseline method attends to the central areas,
containing the fruits and the cream around, which leads to
visual confusion and misclassification of the image as “fried
egg,” whereas our method attends to the central part (fruits
and cream) for “cake” and the right part (cream) for “fried
egg,” classifying the image as “cake” correctly. Addition-
ally, in Figure 2, our method brings the ground-truth class
to the top-1 which is out of top-5 predictions in the baseline
method.
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Figure 1: Improvements in top-1 predictions with our method (ResNet-18 + ICASCAch ) when compared to the baseline
(ResNet-18). Top row: ResNet-18; bottom row: ResNet-18 + ICASCAch .
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Figure 2: Improvements in top-1 predictions with our method (ResNet-110 + ICASCAch ) when compared to the baseline
(ResNet-110). Top row: ResNet-110; bottom row: ResNet-110 + ICASCAch .
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