A. Proof for Theorem 1

Theorem 1. In a multi-class classification problem, (... is noise tolerant under symmetric or uniform label noise if noise
raten <1 — % And, if R(f*) = 0, {,.cc is also noise tolerant under asymmetric or class-dependent label noise when noise

rate Ny <1 —ny with 32y Nyk = Ny

Proof. For symmetric noise:
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where the last equality holds due to 31 w1 lree(f(x), k) = —(K — 1) A following Eq. (5) and the definition of log0 = A (a
negative constant). Thus,
. ni .
RI(f*) = R(f)=(1- ﬁ)(R(f ) — R(f)) <0,
because < 1 — % and f* is a global minimizer of R(f). This proves f* is also the global minimizer of risk R"(f), that is,
{rce 18 NOiSe tolerant.

For asymmetric or class-dependent noise, 1 — 7, is the probability of a label being correct (i.e., & = y), and the noise
condition 7, < 1 — 1, generally states that a sample x still has the highest probability of being in the correct class y, though
it has probability of 7, being in an arbitrary noisy (incorrect) class k # y. Considering the noise transition matrix between
classes [1;;],Vi,j € {1,2,---, K}, this condition only requires that the matrix is diagonal dominated by 7;; (i.e., the correct
class probability 1 — n,). Following the symmetric case, here we have,
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As f,y is the minimizer of R"(f), R"(f;) — R"(f") < 0. So, from Eq.(12), we have,

Exyy[Z(l — Ny — Wyk)(&"ce( *(X): k) — erca(f:;(x)v k) )} <0. (13)
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Next, we prove, f; = f* holds following Eq. (13). First, (1 — 7y —nyx) > 0 as per the assumption that 7,x < 1 —n,. Since we are given
R(f*) =0, we have £yc.(f"(x), k) = —A for all k # y. Also, by the definition of £, we have lrc.(f;(x), k) = —A(1 — pi) < —A,
Vk # y. Thus, for Eq. (13) to hold (e.g. Lrec(fr(x),k) > Lrec(f*(x),k)), it must be the case that pr = 0, Vk # y, that is,
Lree(fr (%), k) = Lree(f7(x), k) forallk € {1,2,--- , K}, thus f; = f* which completes the proof.

|
B. Gradient Derivation of SL
The complete derivartion of the simplified SL («, 8 = 1) with respect to the logits is as follows:
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Combining Eq. (16) and (17) into Eq. (14), we can obtain:
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If ¢; = q, = 1, then the gradient of SL is:
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Else if q_] = O’ then
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