Supplementary Material

In the supplementary material, we show more quantitative and qualitative results in the following aspects:

- In the paper, we train the proposed work on the DUTS training set [8]. However, some works (DSS [5], Amulet [9], R³Net [3], RANet [1]) train their model on MSRA-B [7] or MSRA10K [2] dataset (there is a large overlap between these two datasets [5]). Therefore, we re-train the proposed model on MSRA-B dataset and compare it with these four methods on six metrics. And the results are shown in Section 1.
- In the paper, we show weighted F-measure and structure similarity scores, PR and F-measure curves on five traditional benchmark datasets. In section 2, we exhibit the quantitative comparison on the last dataste (HKU-IS [6]). Meanwhile, we present more visual comparisons in the supplementary material.
- In the paper, we compare the proposed model and existing algorithms on the SOC dataset using structure similarity. Furthermore, the comparisons in other three scores are added in Section 3.

1. Compared to existing models trained on MSRA-B or MSRA10K

In this section, we re-train the proposed model on MSRA-B dataset, and compare it with four existing models which are also trained on MSRA-B or MSRA10K dataset.

Method	Dataset	ECS	SSD	HKU	U-IS	PASC	CAL-S	DUT-O	MRON	DUTS	-TEST	THUR15K	
		maxF↑	MAE↓	maxF↑	MAE↓								
DSS [5]	MB	0.908	0.063	0.898	0.051	0.826	0.102	0.764	0.072	0.813	0.065	0.761	0.083
Amulet [9]	MK	0.913	0.059	0.887	0.053	0.828	0.095	0.737	0.083	0.779	0.085	0.756	0.093
RANet [1]	MB	0.918	0.059	0.913	0.045	0.834	0.104	0.786	0.062	0.831	0.060	0.772	0.075
R ³ Net [3]	MK	0.929	0.051	0.910	0.047	0.837	0.101	0.793	0.073	0.828	0.067	0.781	0.078
Ours	MB	0.937	0.046	0.921	0.041	0.856	0.082	0.801	0.061	0.846	0.055	0.793	0.069

Table 1: Comparisons of scores of maximum F-measure (maxF) and mean absolute error (MAE). MB: MSRA-B dataset. MK: MSRA10K datset

Method	Dataset	ECS	SSD	HK	U-IS	PASC	AL-S	DUT-C	MRON	DUTS	-TEST	THUR15K	
	Dataset	$F^{\omega}_{\beta}\uparrow$	$S_{\alpha}\uparrow$										
DSS [5]	MB	0.842	0.883	0.826	0.879	0.730	0.797	0.640	0.789	0.691	0.826	0.633	0.802
Amulet [9]	MK	0.843	0.894	0.812	0.882	0.735	0.815	0.627	0.781	0.656	0.803	0.652	0.797
RANet [1]	MB	0.860	0.894	0.848	0.888	0.737	0.792	0.695	0.812	0.720	0.839	0.691	0.813
R ³ Net [3]	MK	0.855	0.910	0.815	0.894	0.732	0.809	0.652	0.819	0.692	0.837	0.642	0.820
Ours	MB	0.885	0.914	0.859	0.902	0.771	0.833	0.704	0.827	0.752	0.852	0.709	0.830

Table 2: Comparisons of scores of weighted F-measure (F^{ω}_{β}) and structure similarity (S_{α}) . MB: MSRA-B dataset. MK: MSRA10K datset

Figure 1: Comparisons of F-measure curves and Precision-Recall (PR) curves on six traditional benchmark datasets.

2. More comparisons with existing 10 algorithms

In the paper, we show weighted F-measure score, structure similarity score, F-measure curve, Precision-Recall curve on five benchmark datasets. Here we show these results of HUKIS dataset in Fig. 2. It is obviously that our model outperforms 10 existing state-of-the-art algorithms on these metrics. Then we show more visual comparisons.

Figure 2: Comparisons of weighted F-measure score, structure similarity score, F-measure curve, Precision-Recall curve on HKUIS dataset.

*	2	2	•	•	-	•	1	þ	•	1	•	•
		•	° ₹	€ ¶	्र्यू इ		4	¦¶	ţ	€		\$
\$	4 4	€ ≵	f †	∳ †	∮ ‡	∳ ≬	f ŧ	f f	۠	€ ŧ	++	∳ †
	v	X	1	•		2	ļ	-	Ţ	ľ		
EI	T	1 1 1	13	16.2	1. 2	1.3	া হা	15 2	DO		D CI	D
**	r t	r t	t †	* •	1. 1.	1	1.	1.		t t	9	11
ha	2	2		2	~							-
The	*	ĥ	-	-66	-4	-	-64	*	- Marc	-	-	~€ €
Image	GT	Ours	PiCANet-R	DGRL	BMPM	PAGR	SRM	R ³ Net	C2S-Net	RANet	Amulet	DSS

Figure 3: Visual comparisons with the existing methods in one challenging case: objects with reflection.

	ín,	4 m	-	. #	n d ^{ij}	64	1 He		A.	1		
	•	æ.,			*		<u>.</u>	*	٠.	• 4 *	-	"Å
	,	1.1	A.	5		$\lambda_{a^{(1)}}$	int.	1	- Che		- Star	**×
A F	2	ا ھ	A	ц¥.,	þ	0	4	ا م	V	ţ.	21	b 1
	*	~	۹.	<u>-</u> 7-	Å.	4	4	.	•	A.	2	4
	Š	1		5 	s£. ∵y	ள் `ர	ح ه		ः स्रो	ر در من		्र के स्वयं
	-		E.	<u>`</u>	5	×.	5	13	Y	B	5	E)
-	1	1		¥			- marking		-	بەد. ا		-1 -1
			2020-01		-			-	_	(-		
6	•	10	>	>		*	- } -		1			
	•	/•	*	<u>م</u> ا			>> () }		_ } - ₹″^≉) 		
	•	*** /* •	>> 			>>> /@		>+ > 	_} ♥ /A ₽	> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	、 ・ ・	• • •	>> 			* /e				م م م		<u>ب</u> م ج
	、 * * .	** /* * *				* /e *		> > > > >	• } • • • • • • •	> - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		► _^ ₹
	、 * * * * * *	• • • •				>> > > > > > > > > > > > > > > > > > >						به می ج ب
		• • • •							♪			>
		• • • • •										

Figure 4: Visual comparisons with the existing methods in one challenging case: small object.

Figure 5: Visual comparisons with the existing methods in one challenging case: multiple objects.

Figure 6: Visual comparisons with the existing methods in one challenging case: large object.

Figure 7: Visual comparisons with the existing methods in one challenging case: complex scene.

3. More results on SOC dataset

In the paper, we present the attribute-based structure similarity scores of the proposed model and compared algorithms. Here we show the attribute-based MAE, maxF and weighted F-measure scores in Table 3, Table 4 and Table 5 respectively.

Attr	DSS	Amulet	RANet	C2S-Net	R3Net	SRM	DGRL	BMPM	PiCANet-R	Ours
AC	0.119	0.133	0.139	0.105	0.140	0.089	0.084	0.097	0.097	0.078
BO	0.327	0.276	0.409	0.227	0.433	0.239	0.184	0.239	0.208	0.224
CL	0.168	0.165	0.192	0.141	0.174	0.139	0.119	0.132	0.124	0.110
HO	0.123	0.130	0.150	0.115	0.146	0.104	0.089	0.101	0.097	0.084
MB	0.131	0.135	0.150	0.097	0.157	0.092	0.073	0.076	0.069	0.059
OC	0.157	0.167	0.193	0.133	0.191	0.140	0.118	0.124	0.126	0.113
OV	0.181	0.167	0.219	0.148	0.220	0.135	0.114	0.128	0.114	0.110
SC	0.112	0.131	0.131	0.102	0.138	0.101	0.086	0.091	0.097	0.076
SO	0.112	0.156	0.114	0.118	0.117	0.106	0.096	0.096	0.102	0.085
Avg	0.130	0.153	0.148	0.124	0.147	0.111	0.099	0.104	0.104	0.091

Table 3: Attribute-based MAE scores in SOC dataset [4]

Attr	DSS	Amulet	RANet	C2S-Net	R3Net	SRM	DGRL	BMPM	PiCANet-R	Ours
AC	0.740	0.754	0.722	0.767	0.718	0.789	0.784	0.770	0.789	0.817
BO	0.819	0.850	0.767	0.875	0.793	0.875	0.895	0.868	0.883	0.885
CL	0.713	0.728	0.677	0.761	0.727	0.758	0.769	0.750	0.782	0.800
HO	0.764	0.770	0.727	0.767	0.738	0.793	0.805	0.788	0.812	0.838
MB	0.769	0.752	0.757	0.850	0.752	0.841	0.838	0.830	0.866	0.891
OC	0.715	0.734	0.659	0.750	0.686	0.726	0.750	0.758	0.759	0.784
OV	0.756	0.798	0.709	0.800	0.726	0.822	0.824	0.829	0.848	0.844
SC	0.728	0.727	0.708	0.738	0.704	0.745	0.759	0.766	0.759	0.806
SO	0.648	0.614	0.639	0.648	0.643	0.673	0.662	0.675	0.679	0.727
Avg	0.701	0.691	0.673	0.714	0.684	0.735	0.731	0.737	0.745	0.778

Table 4: Attribute-based maxF scores in SOC dataset [4]

Attr	DSS	Amulet	RANet	C2S-Net	R3Net	SRM	DGRL	BMPM	PiCANet-R	Ours
AC	0.622	0.621	0.586	0.655	0.570	0.681	0.713	0.671	0.671	0.724
BO	0.635	0.718	0.516	0.757	0.466	0.752	0.815	0.744	0.774	0.761
CL	0.573	0.608	0.513	0.647	0.569	0.647	0.691	0.643	0.667	0.707
НО	0.651	0.645	0.599	0.667	0.606	0.694	0.738	0.696	0.701	0.748
MB	0.648	0.641	0.597	0.724	0.576	0.732	0.778	0.718	0.773	0.817
OC	0.591	0.603	0.507	0.650	0.521	0.628	0.681	0.656	0.655	0.692
OV	0.628	0.684	0.552	0.703	0.554	0.724	0.759	0.728	0.759	0.763
SC	0.615	0.600	0.577	0.635	0.556	0.645	0.692	0.668	0.640	0.713
SO	0.515	0.471	0.508	0.525	0.492	0.547	0.582	0.562	0.543	0.610
Avg	0.572	0.561	0.535	0.602	0.532	0.623	0.658	0.632	0.630	0.677

Table 5: Attribute-based weighted F-measure scores in SOC dataset [4].

References

- [1] S. Chen, X. Tan, B. Wang, and X. Hu. Reverse attention for salient object detection. In ECCV, pages 236–252, 2018.
- [2] M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S. Hu. Global contrast based salient region detection. *IEEE TPAMI*, 37(3):569–582, 2015.
- [3] Z. Deng, X. Hu, L. Zhu, X. Xu, J. Qin, G. Han, and P. Heng. R³net: Recurrent residual refinement network for saliency detection. In *IJCAI*, pages 684–690, 2018.

- [4] D. Fan, M. Cheng, J. Liu, S. Gao, Q. Hou, and A. Borji. Salient objects in clutter: Bringing salient object detection to the foreground. In ECCV, pages 196–212, 2018.
- [5] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply supervised salient object detection with short connections. IEEE TPAMI, 41(4):815–828, 2019.
- [6] G. Li and Y. Yu. Visual saliency based on multiscale deep features. In CVPR, pages 5455–5463, 2015.
- [7] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum. Learning to detect a salient object. In CVPR, pages 1-8, 2007.
- [8] L. Wang, H. Lu, Y. Wang, M. Feng, D. Wang, B. Yin, and X. Ruan. Learning to detect salient objects with image-level supervision. In CVPR, pages 136–145, 2017.
- [9] P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan. Amulet: Aggregating multi-level convolutional features for salient object detection. In *ICCV*, pages 202–211, 2017.