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1. Experimental settings
For the experiments InteriorNet and ScanNet experiments, we train our model and all other learning methods for 20 and

15 epochs respectively, on single GPU.
In terms of data augmentation, for training on both InteriorNet and ScanNet, we vary the vertical field of view of the input

images to lie between 35 degrees and 45 degrees by cropping the images while keeping their aspect ratios unchanged before
resizing to 384×284. We randomly crop training images, but during both validation and test phases, we precompute crop
sizes in order so that evaluation results are deterministic.

For our method, we use the following loss hyperparameters in the main manuscript: αF = 0.5, α∇ = 0.125 for Interior-
Net, and αF = 2, α∇ = 0.5 for ScanNet, found using their respective validation sets.

2. Mathematical details
2.1. Differentiable constrained least squares

In this section, we provide additional mathematical details to supplement Section 3.1 in the main paper. Recall that the
Lagrangian in Equation 5 in the main paper is:

L = (Ar− b)T (Ar− b)− λ(rT r− 1) (1)

The first order optimality condition of Equation 1 leads to the following equations:

∂L

∂x
= 0⇒ (ATA− λI)r = ATb (2)

∂L

∂λ
= 0⇒ rT r = 1 (3)

To solve fo λ and r analytically, we use the techniques proposed by [1]. Specifically, we have following proposition from [1]:

Proposition 1. Equation 2 and Equation 3 can be reduced to a quadratic eigenvalue problem (QEP)

Iλ2 − 2Hλ+ H2 − ggT = 0 (4)

where H = ATA and g = ATb.

Proof. According to Equation 2 and Equation 3, we have

(H− λI)r = g (5)

r = (H− λI)−1g (6)

rT r = 1⇒ gT (H− λI)−2g = 1 (7)
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Now let γ = (H− λI)−2g. We then have{
gT γ = 1

(H− λI)2γ = g
⇒ (H− λI)2γ = ggT γ (8)

From Equation 8, we have

(Iλ2 − 2Hλ+ H2 − ggT )γ = 0 (9)

and since γ is not necessarily zero, we finally have

Iλ2 − 2Hλ+ H2 − ggT = 0 (10)

In terms of the solvability of this QEP described in the Theorem 1 of the main paper, we refer readers to Theorem 5.1 and
Theorem 5.2 of [1] for a complete proof.

In order to solve this QEP, we can reduce it to an ordinary eigenvalue problem [1]. Specifically, let µ = (H− λI)γ, then
the following two equations can be obtained:

Hγ − µ = λγ (11)

Hµ− ggT γ = λµ (12)

Written in matrix form, we finally have [
H −I
−ggT H

] [
γ
µ

]
= λ

[
γ
µ

]
(13)

2.2. Derivative of eigenvalues for general matrix

Since the block matrix on the left hand side of Equation 13 is not necessarily a real symmetric matrix, the optimal λ
corresponds to the minimum real eigenvalue of Equation 13. In order to backpropagte through a neural networks, we need to
compute the derivative of this eigenvalue.

The definition of a general eigenvalue problem can be written as:

AX−XΛ = 0 (14)
Y∗A−AY∗ = 0 (15)

where ∗ is the conjugate transpose of a matrix, and X is a matrix whose columns contain right eigenvectors, Y is a matrix
whose columns contain left eigenvectors, and Λ is diagonal matrix consisting of eigenvalues. In our case, the left-eigenvectors
are chosen such that Y∗X = I.

Therefore, the derivative of the eigensystem is given by

∂AX−X∂Λ = −A∂X + ∂XΛ (16)

Premultiplication with the conjugate transpose of left-eigenvectors in Equation 16 leads to

Y∗∂AX−Y∗X∂Λ = Y∗A∂X + Y∗∂XΛ (17)
Y∗∂AX− ∂Λ = Y∗A∂X + Y∗∂XΛ (18)

Numerically speaking, the minimum real eigenvalue of A is unique. In that case, we have that ∂X = XC since the
eigenvectors form a basis of Cn. Thus, we have

Y∗∂AX− ∂Λ = −Y∗AXC + Y∗XCΛ (19)
Y∗∂AX− ∂Λ = −ΛC + CΛ (20)

Y∗∂AX = ∂Λ (21)

Writing Equation 21 in terms of each component, the derivative of each eigenvalue is given as

∂λk = y∗k∂Axk (22)

where λk is the kth eigenvalue of A, yk and xk are the kth left-eigenvector and right-eigenvector of A, respectively. We
refer readers to [3, 2] for the original derivation.



3. Ground truth camera orientation distributions
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Figure 1. Distribution of ground-truth roll and pitch angles in InteriorNet. x-axes indicate pitch (left) and roll (right) value in degrees.
y-axes indicate the frequency of samples.

Figure 1 shows the distribution of ground-truth roll and pitch in InteriorNet, and Figure 2 shows the distribution of ground-
truth roll and pitch in ScanNet.
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Figure 2. Distribution of ground-truth roll and pitch in ScanNet. x-axes indicate pitch (left) and roll (right) value in degrees. y-axes
indicate the frequency of samples. Note that ScanNet has a bias towards cameras pitched downwards.

4. Additional results
Figure 3 shows predicted surface frames and weight images from the ScanNet test set, and Figure 4 shows predicted

surface frames and weight images from the SUN360 test set.
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Figure 3. Visualizations of predicted surface frames and associated weights in the ScanNet testset.
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Figure 4. Visualizations of predicted surface frames and associated weights in the SUN360 testset.


