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A. Implementation Details
Attack setting As described in the threat model section, we limit the L2 norm of the adversarial perturbation to be below
8 pixel in all settings because otherwise the the adversarial perturbation would be perceptible and can be easily detected. We
set a max iteration of 1000 as the breakout condition.

Adversarial targets of semantic segmentation We evaluate over three different adversarial targets: “Remapping”, “Stripe”,
and “ICCV 2019”. “Remapping” means we generate an adversarial target by shifting the numerical label of each class for
the prediction from a benign frame by a constant offset. This way, we can guarantee that each target has no overlap with
the ground truth. This dynamically generated target also reflects the movement of pixels between frames in a video. For
“Stripe", we divide the target into 19 strips evenly, each of which is filled with a class label, aiming to mitigate possible bias
for different classes. Finally, “ICCV 2019” places the text “ICCV 2019” over the image with contiguous spaces representing
different classes.
Bounding box mIoU We use a metric called bounding box mIoU as the consistency metric for object detection model. Given
the target frame Xt and a pseudo frame X̂s→t, we iterate each the bounding box predicted by the detection model from the
pseudo frame and compute intersection over union (IoU) value against all the bounding boxes detected in the target frame
Xt, agnostic of their class labels. The average of the largest IoU value for each bounding box in the pseudo frame is used
as our consistency metric. The computation of bounding box mIoU is fully described in Algorithm 1 and the computation of
IoU between patches is also illustrated below.

Let a patch be represented by a tuple (x1, y1, x2, y2) where (x1, y1) and (x2, y2) are the upper left and lower right corners’
coordinates of the patch. Given two patches P = (x1, y1, x2, y2), P

′ = (x
′

1, y
′

1, x
′

2, y
′

2), the intersection area of the two
patches A can be computed by max(0,min(x2, x

′

2)−max(x1, x
′

1)) ·max(0,min(y2, y
′

2)−max(y1, y
′

1)). Let w and h
denote the width and height of P and w′, h′ denote the width and height of P ′. getIoU(P, P ′) is defined as

A
w · h+ w′ · h′ −A

(1)

Consistency measurement function for action recognition In our paper, we leverage the attack method proposed by Wei
et al. [5]. The target action recognition framework considered in that work [5] is a CNN+RNN model, so we use the same
model to evaluate AdvIT . Let X = {X1,X2, . . . ,XN} be a video where Xi is the ith frame. Each frame is first fed into
a Inception V2 [4] model individually and the extracted features are further processed by a LSTM model sequentially. The
LSTM model outputs class scores (logits) Yi for each frame; the logits of all frames are averaged and the class with the
highest score is assigned to X . The sparse adversarial perturbations are generated using the same method described in the
original work [5]. We consider the activations of all frames in our consistency metric to determine if a whole video clip is
adversarial. Let X̂ = {X̂1, X̂2, . . . , X̂N} be a sequence of pseudo-frames generated by warping with optical flow and Ŷi be
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Algorithm 1: Bounding Box mIoU

input: array of target bounding boxes T ;
array of predicted bounding boxes P ;

output: mIoU between two arrays of bounding boxes c;

Initialization : cs←[], N ← T .length,M ← P .length;
1 for i← 1 to N do
2 IoU← [];

/* Iterate over the bounding boxes in P. Each bounding box is represented as a patch with its

coordinates. */;
3 B← P [i];
4 for j ← 1 to M do

/* Iterate over the bounding boxes in T. */;
5 B′ ← T [j];

/* getIoU is a function that calculate the IoU between two patches. */;

6 IoU
+← getIoU(B,B′);

7 end
/* Get the IoU of the bounding box in T with the largest overlap with B */;

8 cs
+←Max(IoU);

9 end
10 c←Mean(cs);

Return: c

the logit of the ith frame after replacingX with X̂ . We concatenate all the logits Yi (Ŷi for pseudo frames) together to form
a one-dimensional vector with N · C elements where C is the class number. Let F and F̂ be two one-dimensional vectors
by taking the softmax of the concatenations of Yis and Ŷis respectively. F and F̂ represent two N · C-way categorical
distributions, PF and PF̂ . We take the average of the forward and backward KL divergence between the two distributions,
KL

(
PF ||PF̂

)
+KL

(
PF̂ ||PF

)
, as the consistency metric betweenX and X̂ .

Adaptive attack algorithm Let’s use R1 to denote a flow estimator. It takes two frames Xt−i,Xt as input, where Xt is
the current frame and Xt−i is the ith previous frame, and outputs the flow OF = (∆u,∆v). We formulate the above as
(∆u,∆v) = R(Xt−i,Xt). Denote Y a

t as the adversarial target for frame t, l as the loss considered by the attack algorithms
(e.g. Houdini [2] and DAG [6]) and g as the targeted machine learning model. For the vanilla attack algorithm, they try to
generate the adversarial perturbation Et by optimizing the following objective:

l(g(Xt +Et),Y
a
t ) (2)

To perform adaptive attack, the attacker incorporates temporal continuity into the attack. It generates a perturbation for the
current frame and the perturbation can fool both current frame and the pseudo frames. The adaptive attack objective is defined
as follows:

(3)l(g(Xt +Et),Y
a
t ) +

k∑
i =1

l(warp(R(Xt−i,Xt +Et) +α,Xt−i),Y
a
t )

where k is number of the previous frames considered for adversarial detection. warp represents the function to generate
the pseudo frames by using formulation (1). α is random noise drawn from N(0, σ2) independently. Due to the randomness,
we generate adversarial perturbation using Expectation Over Transformation in Athalye et al. [1]. We follow the settings in
Athalye et al. [1] and sample Nz αs in each iteration.

(4)l(g(Xt +Et),Y
a
t ) + 1/Nz ·

Nz∑
z=0

k∑
i=1

l(warp(R(Xt−i,Xt +Et) +αz,Xti),Y
a
t )

We set Nz = 30 in our attack.
1In our paper, we use Flownet [3] which is differentiable.



Task Attack
Method Target Previous

Frames
Detection (k)

1 3 5

Semantic
Segmentation

Houdini

ICCV
Benign 100% 100% 100%

Adversarial 100% 100% 100%

Remapping
Benign 100% 100% 100%

Adversarial 100% 100% 100%

Stripe
Benign 100% 100% 100%

Adversarial 100% 100% 100%

DAG

ICCV
Benign 100% 100% 100%

Adversarial 100% 100% 100%

Remapping
Benign 100% 100% 100%

Adversarial 100% 100% 100%

Stripe
Benign 100% 100% 100%

Adversarial 100% 100% 100%

Human
Pose

Estimation
Houdini

shuffle
Benign 100% 100% 100%

Adversarial 100% 100% 100%

Transpose
Benign 100% 100% 100%

Adversarial 98% 99% 100%

Object
Detection DAG

all
Benign 100% 100% 100%

Adversarial 100% 100% 100%

person
Benign 99% 100% 100 %

Adversarial 97% 98% 100%

Table A: Detection results (AUC) of AdvIT against independent frame attack on various video tasks with different attack
methods and targets.

B. Experimental Results
We include additional results of AdvIT in Table A. It shows that our method can achieve almost 100% detection rate

among all settings.
Table B evaluate the accuracy of pseudo-frame prediction in terms of Root Mean Square(RMS) error. We observe that the

prediction accuracy does not significantly affect the adversarial detection rate.

Task Attack
Method

Previous
Frames

Accuracy[RMS](k)
1 3 5

Semantic
Segmentation Houdini

Benign 0.045± 0.006 0.054±0.011 0.059±0.013
Adversarial 0.045±0.006 0.054±0.011 0.060±0.013

Human Pose
Estimation Houdini

Benign 0.098±0.010 0.114±0.027 0.127±0.039
Adversarial 0.101±0.010 0.117±0.026 0.130±0.039

Object
Detection DAG

Benign 0.069±0.017 0.090±0.027 0.104±0.032
Adversarial 0.069±0.017 0.090±0.027 0.104±0.032

Table B: Accuracy of the predicted pseudo-frames among different settings

As long as the prediction accuracy is reasonable, the inconsistency phenomenon is very obvious due to adversarial per-
turbation. We also show experiments results with different randomness (α) added to the optical flow by varying σ. For
semantic segmentation, 0.02 and 0.2 are considered for the value of σ. The corresponding RMS values are 0.088± 0.003
and 0.16 ± 0.006 respectively. 100% detection rates are achieved in both settings. It shows that even we more randomness



Interval
(k)

Segmentation (ε) Object detection (ε) Human pose (ε)
2 16 32 2 16 32 2 16 32

1 100% 100% 100% 98.3% 88.3% 83.5% 98.4% 97.9% 96.3%
3 100% 100% 100% 99.8% 95.5% 91.2% 98.6% 98.4% 96.6%
5 100% 100% 100% 99.9% 97.9% 95.15% 98.7% 98.6% 96.7%

Table C: Detection results (AUC) of differnt attack strength

to (α) during wrapping to make the pipeline more robust against adaptive attack, the detection efficacy of AdvIT is not
compromised.

In addition, we conducted extra experiments by limiting the perturbation magnitude to 2, 16, 32 pixels (in range of [0,255])
to evaluate the effectiveness of AdvIT against the attack with different strength in Table C. It shows that the detection rate
will decrease a bit with the magnitude increasing. But with ensemble of previous k frames, it is still effective.
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