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In this Supplement, we provide further clarifications and discussions on the motivation of S-DCNet, compare S-DCNet
with other related ideas, and show qualitative results on evaluated datasets.

1. The Open-Set Problem of Density Maps
Density maps are actually in the open set as well. As shown in Fig. 1(b) (top), for a single point, different kernel sizes lead

to different density values. When multiple objects exist and are close, density patterns are even much diverse as in Fig. 1(b)
(bottom). Since observed samples are limited, density maps are certainly in an open set.

We add another baseline of CSRNet [3] to the toy experiment in Fig. 1(a). CSRNet also performs worse than S-DCNet in
the open set (> 10), which implies the open-set problem also exists in density map based methods.

Furthermore, density map cannot be used in S-DCNet, because it is not spatially divisible. This is determined by its
physical definition. However, local counts can. Thus we adopt local counts in S-DCNet rather than density maps.

Figure 1. (a) The toy-level experiment with an extra “CSRNet” baseline. (b) Density values along one axis with various kernels (top), and
with two kernels with different relative distances.

2. Relation to Other Methods
IG-CNN [1] IG-CNN drew inspirations from ensemble learning and trained a series of networks to tackle different scenes.
While our S-DCNet focuses on inducing and utilizing physical laws, such as the “open set” problem in counting and the
spatial divisibility of local counts. We propose to transform the open-set counting into a closed-set problem via spatial
divide-and-conquer.

Attention Mechanisms Despite it is possible to provide explicit supervision to Wi, we find that S-DCNet already can
produce reasonably good divisions with the implicit supervision provided by L2

R. This has another benefit, the network can
learn when to divide not just in counts larger than Cmax. The visualizations of Wis in Fig. 2 further justify our point. To
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highlight the difference against attention, we remove the division decider and generate a three-channel output conditioned
on F2, then process it with softmax to obtain W att

0 ,W att
1 ,W att

2 . The final count is merged as W att
0 ∗ upsample(C0) +

W att
1 ∗ upsample(C1) +W att

2 ∗ C2. In SHTech PartA, it has 64.1 MAE and 109.9 MSE (worse than S-DCNet). As per
the visualization of W att

i in Fig. 2, we find the attention only focuses on the highest resolution and no effect of division is
observed. In addition, S-DCNet executes fusion progressively, while attention fuses the prediction in a single step.

Figure 2. Visualization of Wi for S-DCNet (top) and the attention baseline (bottom). The lighter the image is, the greater the values are. In
the input image, count values greater than Cmax are indicated by yellow regions.

3. Further Discussions on S-DCNet
The necessity to distinguish counting task into open set and closed set scenarios One may raise the concern like:
the relevance of distinguishing counting to an open set and closed set is unnecessary if each data point (head) is treated
separately and the network learns to count each data point. If the network can count each head well, counting should already
be addressed by detection networks. However, detection performs poorly when objects seriously overlap. This is why the
notion of density map is introduced in [2], and density-based networks beat detection networks in counting. It is thus not
suitable to treat each point separately, and distinguishing counting to an open set and closed set makes sense.

Generating ground-truth local counts Generating local counts directly from point annotations does not take partial ob-
jects cropped in patches into account. Density maps naturally tackle this situation. Thus we generate ground-truth counts of
local patches by integrating over the density maps. This strategy is only utilized during training, while the point annotations
are still used to calculate errors during validation.

If one position in W1 is 0, which means the initial prediction should not be replaced. Is it possible that the same
position in W2 is 1? In theory, it is possible, because each division decision is independent. However, in practice, we do
not observe such a behaviour of W (Fig. 2). Even this situation appears, we do not think it will be a problem. W2 gives the
second chance for division if the division decider makes a wrong decision in W1.

Why C2 is performing much worse than C1 and C0 in S-DCNet? C0, C1 and C2 are trained jointly in S-DCNet and
greatly influenced by the loss of L2

R. As shown in Fig. 2, W2 focus on local patches with high density, which means L2
R will

push C2 to predict well on these patches and ignore others. High density patches, however, only occupy a small fraction. C2

thus tends to predict worse than C0 and C1. This may also explain why three-stage/four-stage S-DCNet performs worse than
two-stage S-DCNet.

4. Qualitative Results of S-DCNet
We present some qualitative results of two-stage S-DCNet on five benchmarks (ShanghaiTech, UCF CC 50, UCF-QNRF,

TRANCOS and MTC) in Fig. 3 to 8. S-DCNet predicts the local count map conditioned on the input image, where each
element denotes a count value of the corresponding 16× 16 local area. Meanwhile, since the output stride of S-DCNet is 64,
we pad the original image with zeros to ensure that the length and width are multiples of 64.



Figure 3. Some samples generated by S-DCNet from the test set of ShanghaiTech Part A dataset. The left column shows the original
images, while the middle and right columns display the ground truth and predicted count maps respectively.
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Figure 4. Some samples generated by S-DCNet from the test set of ShanghaiTech Part B dataset. The left column shows the original
images, while the middle and right columns display the ground truth and predicted count maps respectively.



Figure 5. Some samples generated by S-DCNet from the test set of UCF CC 50 dataset. The left column shows the original images, while
the middle and right columns display the ground truth and predicted count maps respectively.



Figure 6. Some samples generated by S-DCNet from the test set of UCF-QNRF dataset. The left column shows the original images, while
the middle and right columns display the ground truth and predicted count maps respectively.



Figure 7. Some samples generated by S-DCNet from the test set of TRANCOS dataset. The left column shows the original images, while
the middle and right columns display the ground truth and predicted count maps respectively.



Figure 8. Some samples generated by S-DCNet from the test set of MTC dataset. The left column shows the original images, while the
middle and right columns display the ground truth and predicted count maps respectively.


