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Figure S-1: The specific architecture of our prediction network.
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Figure S-2: The running time with different refinement iter-
ations and input resolutions.

1. Prediction Network Architecture

The design of the backbone (prediction network) follows
the basic principles adopted by [4]. We employ a variant of
ResNet[2] as the encoder and consecutive upsampling lay-
ers as the decoder, as illustrated in Fig. S-1. The decoder
branches for different modalities (i.e., coarse depth maps,
surface normals and confidences of sparse inputs) diverge
from the end of the encoder, and skip connections are ap-
plied between corresponding layers in encoder and decoders
to preserve more details.

2. More Experimental Results

2.1. Running Time Analysis

Compared with the previous CNN-based methods, our
framework spends extra running time in the space transfor-

RMSE MAE iRMSE iMAE
Ours+Prev. guidance 859.57 325.03 3.02 1.78
Ours+RGB guidance 844.16 279.74 2.94 1.50

Ours+L1 812.62 221.18 2.25 1.03
Ours+Huber 818.59 227.51 2.27 1.07

Ours 811.07 236.67 2.45 1.11

Table S-1: More ablation experimental results.

mation and the refinement phase. Additional time analysis
on these two parts is performed altogether. In the experi-
ment, we fix the diffusion kernel size to 3×3 and test on dif-
ferent input resolutions. Fig. S-2 plots the running time w.r.t
the refinement iterations. It can be found that our proposed
modules (required for enforcing geometric constraints) can
run in real-time, which is suitable to couple with different
prediction backbones.

2.2. More Ablation Study

We further demonstrate the effectiveness of proposed
modules and cast more light on our method by providing
more ablation results in Table S-1. We take the 3 channel
color image as the guidance rather than our proposed guid-
ance feature map (Ours+RGB guidance) and see an inferior
performance due to the absence of geometric information in
color images. It is also been validated that the model with
guidance feature map generated from last decoder layers
(Ours) achieves better performance than that with feature
maps from previous layers (Ours+Prev. guidance). More-
over, we test different loss functions, i.e., L1 loss (Ours+L1)
and Huber loss (Ours+Huber). Compared with using L2
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Figure S-3: More quantitative comparison results with other methods i.e., ADNN [1], Spade [3], SGDU [5], and Sparse
Convs [6]. For each method, we provide the whole completion results as well as error maps for better comparison.

loss (Ours), L1 and Huber loss achieve a lower MAE while
a little bit higher RMSE as illustrated in Table S-1.

2.3. More Qualitative Comparison Results on
KITTI

Fig. S-3 demonstrates more qualitative comparison re-
sults with the other latest competitive methods.

2.4. More Qualitative Results on NYU

Our method achieves good generalization capability to
indoor scenes as well. Fig. S-4 provides more qualita-
tive evaluation results on NYU-Depth-v2 dataset. As we
can see, the prediction network (in first phase) occasion-

ally generates illogical outputs (in coarse depth map) espe-
cially near the sparse depth inputs. Our refinement network
regularizes the depth completion with the constraints be-
tween depths and surface normals. The accurate sparse in-
puts and the skeletons (jointly built by the surface normals
and coarse depths) complement each other in the diffusion
process, thus the refined depth maps are much more accu-
rate and smoother.
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Figure S-4: More Qualitative evaluation results on NYU-Depth-v2 dataset. Each sparse depth map contains about 500 points
randomly sampled from the denser groundtruth. Zoom in for better vision.
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