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A. Proof of Proposition 3

Proof. Here we prove the equivalence between the mixed-
integer program (13) and the optimization in (14) involv-
ing N + 1 quaternions. To do so, we note that since
θi ∈ {+1,−1} and 1+θi

2 ∈ {0, 1}, we can safely move
1+θi

2 inside the squared norm (because 0 = 02, 1 = 12) in
each summand of the cost function (13):

∑N
i=1

1+θi
2
‖b̂i−q⊗âi⊗q−1‖2

σ2
i

+ 1−θi
2 c̄2 (A1)

=
∑N
i=1

‖b̂i−q⊗âi⊗q−1+θib̂i−q⊗âi⊗(θiq
−1)‖2

4σ2
i

+ 1−θi
2 c̄2

Now we introduce N new unit quaternions qi = θiq, i =
1, . . . , N by multiplying q by the N binary variables θi ∈
{+1,−1}, a re-parametrization we called binary cloning.
One can easily verify that qTqi = θi(q

Tq) = θi. Hence,
by substituting θi = qTqi into (A1), we can rewrite the
mixed-integer program (13) as:

min
q∈S3

qi∈{±q}

∑N
i=1

‖b̂i−q⊗âi⊗q−1+qTqib̂i−q⊗âi⊗q−1
i ‖

2

4σ2
i

+ 1−qTqi

2 c̄2, (A2)

which is the same as the optimization in (14). �

B. Proof of Proposition 4

Proof. Here we show that the optimization involving
N + 1 quaternions in (14) can be reformulated as
the Quadratically-Constrained Quadratic Program (QCQP)
in (15). Towards this goal, we prove that the objec-
tive function and the constraints in the QCQP are a re-
parametrization of the ones in (14).

Equivalence of the objective functions. We start by
developing the squared 2-norm term in (14):

‖b̂i − q ⊗ âi ⊗ q−1 + qTqib̂i − q ⊗ âi ⊗ q−1
i ‖2

(‖qTqib̂i‖2 = ‖b̂i‖2 = ‖bi‖2, b̂Ti (qTqi)b̂i = qTqi‖bi‖2)

(‖q ⊗ âi ⊗ q−1‖2 = ‖Rai‖2 = ‖ai‖2)

(‖q ⊗ âi ⊗ q−1
i ‖

2 = ‖θiRai‖2 = ‖ai‖2)

((q⊗âi⊗q−1)T(q⊗âi⊗q−1
i )=(Rai)

T(θiRai)=qTqi‖ai‖2)

= 2‖bi‖2 + 2‖ai‖2 + 2qTqi‖bi‖2 + 2qTqi‖ai‖2

−2b̂Ti (q ⊗ âi ⊗ q−1)− 2b̂Ti (q ⊗ âi ⊗ q−1
i )

−2qTqib̂
T
i (q ⊗ âi ⊗ q−1)− 2qTqib̂

T
i (q ⊗ âi ⊗ q−1

i )(A3)
(qTqib̂

T
i (q⊗âi⊗q−1

i )=(θi)
2b̂Ti (q⊗âi⊗q−1)=b̂Ti (q⊗âi⊗q−1) )

( b̂Ti (q ⊗ âi ⊗ q−1
i ) = qTqib̂

T
i (q ⊗ âi ⊗ q−1) )

= 2‖bi‖2 + 2‖ai‖2 + 2qTqi‖bi‖2 + 2qTqi‖ai‖2

−4b̂Ti (q ⊗ âi ⊗ q−1)− 4qTqib̂
T
i (q ⊗ âi ⊗ q−1)(A4)

where we have used multiple times the binary cloning
equalities qi = θiq, θi = qTqi, the equivalence between
applying rotation to a homogeneous vector âi using quater-
nion product and using rotation matrix in eq. (10) from the
main document, as well as the fact that vector 2-norm is in-
variant to rotation and homogenization (with zero padding).

Before moving to the next step, we make the following
observation by combing eq. (8) and eq. (9):

Ω1(q−1) = ΩT
1 (q), Ω2(q−1) = ΩT

2 (q) (A5)

which states the linear operators Ω1(·) and Ω2(·) of q and
its inverse q−1 are related by a simple transpose operation.
In the next step, we use the equivalence between quaternion
product and linear operators in Ω1(q) and Ω2(q) as defined
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in eq. (7)-(8) to simplify b̂Ti (q ⊗ âi ⊗ q−1) in eq. (A4):

b̂Ti (q ⊗ âi ⊗ q−1)

(q⊗âi=Ω1(q)âi , Ω1(q)âi⊗q−1=Ω2(q
−1)Ω1(q)âi=ΩT

2(q)Ω1(q)âi)

= b̂Ti (ΩT
2 (q)Ω1(q)âi) (A6)

(Ω2(q)b̂i = b̂i ⊗ q = Ω1(b̂i)q , Ω1(q)âi = q ⊗ âi = Ω2(âi)q)

= qTΩT
1 (b̂i)Ω2(âi)q. (A7)

Now we can insert eq. (A7) back to eq. (A4) and write:

‖b̂i − q ⊗ âi ⊗ q−1 + qTqib̂i − q ⊗ âi ⊗ q−1
i ‖2

= 2‖bi‖2 + 2‖ai‖2 + 2qTqi‖bi‖2 + 2qTqi‖ai‖2

−4b̂Ti (q ⊗ âi ⊗ q−1)− 4qTqib̂
T
i (q ⊗ âi ⊗ q−1) (A8)

= 2‖bi‖2 + 2‖ai‖2 + 2qTqi‖bi‖2 + 2qTqi‖ai‖2

−4qTΩT
1 (b̂i)Ω2(âi)q − 4qTqiq

TΩT
1 (b̂i)Ω2(âi)q (A9)

(qTqiq
TΩT

1(b̂i)Ω2(âi)q=θiq
TΩT

1(b̂i)Ω2(âi)q=qTΩT
1(b̂i)Ω2(âi)qi)

= 2‖bi‖2 + 2‖ai‖2 + 2qTqi‖bi‖2 + 2qTqi‖ai‖2

−4qTΩT
1 (b̂i)Ω2(âi)q − 4qTΩT

1 (b̂i)Ω2(âi)qi (A10)
(−ΩT

1 (b̂i) = Ω1(b̂i))

= 2‖bi‖2 + 2‖ai‖2 + 2qTqi‖bi‖2 + 2qTqi‖ai‖2

+4qTΩ1(b̂i)Ω2(âi)q + 4qTΩ1(b̂i)Ω2(âi)qi, (A11)

which is quadratic in q and qi. Substituting eq. (A11) back
to (14), we can write the cost function as:

N∑
i=1

‖b̂i−q⊗âi⊗q−1+qTqib̂i−q⊗âi⊗q−1
i ‖

2

4σ2
i

+ 1−qTqi

2 c̄2

=
N∑
i=1

qTi

 (‖bi‖2 + ‖ai‖2)I4 + 2Ω1(b̂i)Ω2(âi)

2σ2
i

+
c̄2

2
I4︸ ︷︷ ︸

:=Qii

 qi

+2qT

 (‖bi‖2 + ‖ai‖2)I4 + 2Ω1(b̂i)Ω2(âi)

4σ2
i

− c̄2

4
I4︸ ︷︷ ︸

:=Q0i

 qi,
(A12)

where we have used two facts: (i) qTAq = θ2
i q

TAq =
qTi Aqi for any matrix A ∈ R4×4, (ii) c = cqTq =
qT(cI4)q for any real constant c, which allowed writing
the quadratic forms of q and constant terms in the cost as
quadratic forms of qi. Since we have not changed the de-
cision variables q and {qi}Ni=1, the optimization in (14) is
therefore equivalent to the following optimization:

min
q∈S3

qi∈{±q}

N∑
i=1

qTi Qiiqi + 2qTQ0iqi (A13)

where Qii and Q0i are the known 4 × 4 data matrices as
defined in eq. (A12).

Now it remains to prove that the above optimiza-
tion (A13) is equivalent to the QCQP in (15). Recall that
x is the column vector stacking all the N + 1 quaternions,
i.e., x = [qT qT1 . . . qTN ]T ∈ R4(N+1). Let us introduce
symmetric matrices Qi ∈ R4(N+1)×4(N+1), i = 1, . . . , N
and let the 4 × 4 sub-block of Qi corresponding to sub-
vector u and v, be denoted as [Qi]uv; each Qi is defined
as:

[Qi]uv =


Qii if u = qi and v = qi

Q0i
if u=q and v=qi
or u=qi and v=q

04×4 otherwise
(A14)

i.e., Qi has the diagonal 4 × 4 sub-block corresponding to
(qi, qi) be Qii, has the two off-diagonal 4 × 4 sub-blocks
corresponding to (q, qi) and (qi, q) be Q0i, and has all the
other 4× 4 sub-blocks be zero. Then we can write the cost
function in eq. (A13) compactly using x andQi:

N∑
i=1

qTi Qiiqi + 2qTQ0iqi =

N∑
i=1

xTQix (A15)

Therefore, we proved that the objective functions in (14)
and the QCQP (15) are the same.

Equivalence of the constraints. We are only left to
prove that (14) and (15) have the same feasible set, i.e., the
following two sets of constraints are equivalent:

q ∈ S3

qi ∈ {±q},
i = 1, . . . , N

⇔


xT
qxq = 1

xqix
T
qi = xqx

T
q ,

i = 1, . . . , N

(A16)

We first prove the (⇒) direction. Since q ∈ S3, it is obvious
that xT

qxq = qTq = 1. In addition, since qi ∈ {+q,−q},
it follows that xqix

T
qi = qiq

T
i = qqT = xqx

T
q . Then we

proof the reverse direction (⇐). Since xT
qxq = qTq, so

xT
qxq = 1 implies qTq = 1 and therefore q ∈ S3. On

the other hand, xqix
T
qi = xqx

T
q means qiqTi = qqT. If we

write qi = [qi1, qi2, q13, qi4]T and q = [q1, q2, q3, q4], then
the following matrix equality holds:
q2i1 qi1qi2 qi1qi3 qi1qi4
? q2i2 qi2qi3 qi2qi4
? ? q2i3 qi3qi4
? ? ? q2i4

 =


q21 q1q2 q1q3 q1q4
? q22 q2q3 q2q4
? ? q23 q3q4
? ? ? q24


(A17)

First, from the diagonal equalities, we can get qij =
θjqj , θj ∈ {+1,−1}, j = 1, 2, 3, 4. Then we look at
the off-diagonal equality: qijqik = qjqk, j 6= k, since
qij = θjqj and qik = θkqk, we have qijqik = θjθkqjqk,
from which we can have θjθk = 1,∀j 6= k. This im-
plies that all the binary values {θj}4j=1 have the same sign,
and therefore they are equal to each other. As a result,
qi = θiq = {+q,−q}, showing the two sets of constraints



in eq. (A16) are indeed equivalent. Therefore, the QCQP
in eq. (15) is equivalent to the optimization in (A13), and
the original optimization in (14) that involvesN +1 quater-
nions, concluding the proof. �

C. Proof of Proposition 5

Proof. Here we show that the non-convex QCQP written
in terms of the vector x in Proposition 4 (and eq. (15)) is
equivalent to the non-convex problem written using the ma-
trixZ in Proposition 5 (and eq. (18)). We do so by showing
that the objective function and the constraints in (18) are a
re-parametrization of the ones in (15).

Equivalence of the objective function. Since Z =
xxT, and denoting Q .

=
∑N
i=1Qi, we can rewrite the cost

function in (18) as:

∑N
i=1 x

TQix = xT
(∑N

i=1Qi

)
x = xTQx

= tr
(
QxxT

)
= tr (QZ) (A18)

showing the equivalence of the objectives in (15) and (18).
Equivalence of the constraints. It is trivial to see that

xT
qxq = tr

(
xqx

T
q

)
= 1 is equivalent to tr ([Z]qq) = 1 by

using the cyclic property of the trace operator and inspect-
ing the structure of Z. In addition, xqix

T
qi = xqx

T
q also di-

rectly maps to [Z]qiqi = [Z]qq for all i = 1, . . . , N . Lastly,
requiring Z � 0 and rank (Z) = 1 is equivalent to restrict-
ing Z to the form Z = xxT for some vector x ∈ R4(N+1).
Therefore, the constraint sets of eq. (15) and (18) are also
equivalent, concluding the proof. �

D. Proof of Proposition 6

Proof. We show eq. (19) is a convex relaxation of (18) by
showing that (i) eq. (19) is a relaxation (i.e., the constraint
set of (19) includes the one of (18)), and (ii) eq. (19) is con-
vex. (i) is true because from (18) to (19) we have dropped
the rank (Z) = 1 constraint. Therefore, the feasible set
of (18) is a subset of the feasible set of (19), and the optimal
cost of (19) is always smaller or equal than the optimal cost
of (18). To prove (ii), we note that the objective function
and the constraints of (19) are all linear in Z, and Z � 0 is
a convex constraint, hence (19) is a convex program. �

E. Proof of Theorem 7

Proof. To prove Theorem 7, we first use Lagrangian dual-
ity to derive the dual problem of the QCQP in (15), and
draw connections to the naive SDP relaxation in (19) (Sec-
tion E.1). Then we leverage the well-known Karush-Kuhn-
Tucker (KKT) conditions [3] to prove a general sufficient
condition for tightness, as shown in Theorem A6 (Sec-
tion E.2). Finally, in Section E.3, we demonstrate that in the

case of no noise and no outliers, we can provide a construc-
tive proof to show the sufficient condition in Theorem A6
always holds.

E.1. Lagrangian Function and Weak Duality

Recall the expressions of Qi in eq. (A14), and define
Q =

∑N
i=1Qi. The matrix Q has the following block

structure:

Q =
∑N
i=1Qi =


0 Q01 . . . Q0N

Q01 Q11 . . . 0
...

...
. . .

...
Q0N 0 . . . QNN

 .(A19)

With cost matrix Q, and using the cyclic property of the
trace operator, the QCQP in eq. (15) can be written com-
pactly as in the following proposition.

Proposition A1 (Primal QCQP). The QCQP in eq. (15) is
equivalent to the following QCQP:

(P ) min
x∈R4(N+1)

tr
(
QxxT

)
(A20)

subject to tr
(
xqx

T
q

)
= 1

xqix
T
qi = xqx

T
q ,∀i = 1, . . . , N

We call this QCQP the primal problem (P).

The proposition can be proven by inspection. We now
introduce the Lagrangian function [3] of the primal (P ).

Proposition A2 (Lagrangian of Primal QCQP). The La-
grangian function of (P ) can be written as:

L(x, µ,Λ) = tr
(
QxxT

)
− µ(tr

(
JxxT

)
− 1)

−
∑N
i=1 tr

(
Λixx

T
)

(A21)

= tr
(
(Q− µJ −Λ)xxT

)
+ µ. (A22)

where J is a sparse matrix with all zeros except the first
4× 4 diagonal block being identity matrix:

J =


I4 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , (A23)

and each Λi, i = 1, . . . , N is a sparse Lagrangian multi-
plier matrix with all zeros except two diagonal sub-blocks
±Λii ∈ Sym4×4 (symmetric 4× 4 matrices):

Λi =



Λii 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · −Λii · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0


, (A24)



and Λ is the sum of all Λi’s, i = 1, . . . , N :

Λ =

N∑
i=1

Λi =

N∑
i=1

Λii 0 . . . 0 . . . 0

0 −Λ11 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . −Λii . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . −ΛNN


. (A25)

Proof. The sparse matrix J defined in (A23) satisfies
tr
(
JxxT

)
= tr

(
xqx

T
q

)
. Therefore µ(tr

(
JxxT

)
− 1) is

the same as µ(tr
(
xqx

T
q

)
− 1), and µ is the Lagrange mul-

tiplier associated to the constraint tr
(
xqx

T
q

)
= 1 in (P ).

Similarly, from the definition of the matrix Λi in (A25), it
follows:

tr
(
Λixx

T
)

= tr
(
Λii(xqix

T
qi − xqx

T
q )
)
, (A26)

where Λii is the Lagrange multiplier (matrix) associated to
each of the constraints xqix

T
qi = xqx

T
q in (P ). This proves

that (A21) (and eq. (A22), which rewrites (A21) in compact
form) is the Lagrangian function of (P ). �

From the expression of the Lagrangian, we can readily
obtain the Lagrangian dual problem.

Proposition A3 (Lagrangian Dual of Primal QCQP). The
following SDP is the Lagrangian dual for the primal QCQP
(P) in eq. (A20):

(D) max
µ∈R

Λ∈R4(N+1)×4(N+1)

µ (A27)

subject to Q− µJ −Λ � 0

where J and Λ satisfy the structure in eq. (A23) and (A25).

Proof. By definition, the dual problem is [3]:

max
µ,Λ

min
x
L(x, µ,Λ), (A28)

where L(x, µ,Λ) is the Lagrangian function. We observe:

max
µ,Λ

min
x
L(x, µ,Λ) =

{
µ ifQ− µJ −Λ � 0

−∞ otherwise
.(A29)

Since we are trying to maximize the Lagrangian (with re-
spect to the dual variables), we discard the case leading to a
cost of −∞, obtaining the dual problem in (A27). �

To connect the Lagrangian dual (D) to the naive SDP
relaxation (19) in Proposition 6, we notice that the naive
SDP relaxation is the dual SDP of the Lagrangian dual (D).

Proposition A4 (Naive Relaxation is the Dual of the Dual).
The following SDP is the dual of the Lagrangian dual (D)
in (A27):

(DD) min
Z�0

tr (QZ) (A30)

subject to tr ([Z]qq) = 1

[Z]qiqi = [Z]qq,∀i = 1, . . . , N

and (DD) is the same as the naive SDP relaxation in (19).

Proof. We derive the Lagrangian dual problem of (DD)
and show that it is indeed (D) (see similar example in [3,
p. 265]). Similar to the proof of Proposition (A2), we
can associate Lagrangian multiplier µJ (eq. (A23)) to the
constraint tr ([Z]qq) = 1, and associate Λi, i = 1, . . . , N
(eq. (A24)) to constraints [Z]qiqi = [Z]qq, i = 1, . . . , N . In
addition, we can associate matrix Θ ∈ Sym4(N+1)×4(N+1)

to the constraint Z � 0. Then the Lagrangian of the SDP
(DD) is:

L(Z, µ,Λ,Θ)

= tr (QZ)− µ(tr (JZ)− 1)−
N∑
i=1

(tr (ΛiZ))− tr (ΘZ)

= tr ((Q− µJ −Λ−Θ)Z) + µ, (A31)

and by definition, the dual problem is:

max
µ,Λ,Θ

min
Z
L(Z, µ,Λ,Θ). (A32)

Because:

max
µ,Λ,Θ

min
Z
L =

{
µ ifQ− µJ −Λ−Θ � 0

−∞ otherwise
, (A33)

we can get the Lagrangian dual problem of (DD) is:

max
µ,Λ,Θ

µ (A34)

subject to Q− µJ −Λ � Θ

Θ � 0

Since Θ is independent from the other decision variables
and the cost function, we inspect that setting Θ = 0 actu-
ally maximizes µ and therefore can be removed. Removing
Θ from (A34) indeed leads to (D) in eq. (A27). �

We can also verify weak duality by the following calcu-
lation. Denote fDD = tr (QZ) and fD = µ. Recalling the
structure of Λ from eq. (A25), we have tr (ΛZ) = 0 be-
cause [Z]qiqi = [Z]qq,∀i = 1, . . . , N . Moreover, we have
µ = µtr (JZ) due to the pattern of J from eq. (A23) and
tr ([Z]qq) = 1. Therefore, the following inequality holds:

fDD − fD = tr (QZ)− µ
= tr (QZ)− µtr (JZ)− tr (ΛZ)

= tr ((Q− µJ −Λ)Z) ≥ 0 (A35)



where the last inequality holds true because bothQ−µJ −
Λ and Z are positive semidefinite matrices. Eq. (A35)
shows fDD ≥ fD always holds inside the feasible set and
therefore by construction of (P ), (D) and (DD), we have
the following weak duality relation:

f?D ≤ f?DD ≤ f?P . (A36)

where the first inequality follows from eq. (A35) and the
second inequality originates from the point that (DD) is a
convex relaxation of (P ), which has a larger feasible set and
therefore the optimal cost of (DD) (f?DD) is always smaller
than the optimal cost of (P ) (f?P ).

E.2. KKT conditions and strong duality

Despite the fact that weak duality gives lower bounds for
objective of the primal QCQP (P ), in this context we are
interested in cases when strong duality holds, i.e.:

f?D = f?DD = f?P , (A37)

since in these cases solving any of the two convex SDPs (D)
or (DD) will also solve the original non-convex QCQP (P )
to global optimality.

Before stating the main theorem for strong duality, we
study the Karush-Kuhn-Tucker (KKT) conditions [3] for the
primal QCQP (P ) in (A20), which will help pave the way
to study strong duality.

Proposition A5 (KKT Conditions for Primal QCQP). If x?

is an optimal solution to the primal QCQP (P ) in (A20)
(also (15)), and let (µ?,Λ?) be the corresponding optimal
dual variables (maybe not unique), then it must satisfy the
following KKT conditions:

(Stationary condition)

(Q− µ?J −Λ?)x? = 0, (A38)
(Primal feasibility condition)

x? satisfies the constraints in (A20) . (A39)

Using Propositions A1-A5, we state the following theo-
rem that provides a sufficient condition for strong duality.

Theorem A6 (Sufficient Condition for Strong Duality).
Given a stationary point x?, if there exist dual variables
(µ?,Λ?) (maybe not unique) such that (x?, µ?,Λ?) satisfy
both the KKT conditions in Proposition A5 and the dual
feasibility conditionQ−µ?J −Λ? � 0 in Proposition A3,
then:

(i) There is no duality gap between (P), (D) and (DD), i.e.
f?P = f?D = f?DD,

(ii) x? is a global minimizer for (P).

Moreover, if we have rank (Q− µ?J −Λ?) = 4(N+1)−
1, i.e., Q − µ?J − Λ? has 4(N + 1) − 1 strictly positive
eigenvalues and only one zero eigenvalue, then we have the
following:

(iii) ±x? are the two unique global minimizers for (P),

(iv) The optimal solution to (DD), denoted asZ?, has rank
1 and can be written as Z? = (x?)(x?)T.

Proof. Recall from eq. (A36) that we already have weak
duality by construction of (P ), (D) and (DD). Now since
(x?, µ?,Λ?) satisfies the KKT conditions (A39) and (A38),
we have:

(Q− µ?J −Λ?)x? = 0⇒
(x?)T(Q− µ?J −Λ?)(x?) = 0⇒ (A40)

(x?)TQ(x?) = µ?(x?)TJ(x?) + (x?)TΛ?(x?)⇒ (A41)
(x? satisfies the constraints in (P ) by KKT (A39))

(Recall structural partition of J and Λ in (A23) and (A25))

tr
(
Q(x?)(x?)T

)
= µ?, (A42)

which shows the cost of (P ) is equal to the cost of (D) at
(x?, µ?,Λ?). Moreover, since Q − µ?J − Λ? � 0 means
(µ?,Λ?) is actually dual feasible for (D), hence we have
strong duality between (P ) and (D): f?P = f?D. Because
f?DD is sandwiched between f?P and f?D according to (A36),
we have indeed strong duality for all of them:

f?D = f?DD = f?P , (A43)

proving (i). To prove (ii), we observe that for any x ∈
R4(N+1),Q− µ?J −Λ? � 0 means:

xT(Q− µ?J −Λ?)x ≥ 0. (A44)

Specifically, let x be any vector that lies inside the feasible
set of (P ), i.e., tr

(
xqx

T
q

)
= 1 and xqix

T
qi = xqx

T
q ,∀i =

1, . . . , N , then we have:

xT(Q− µ?J −Λ?)x ≥ 0⇒
xTQx ≥ µ?xTJx+ xTΛ?x⇒ (A45)

tr
(
QxxT

)
≥ µ? = tr

(
Q(x?)(x?)T

)
, (A46)

showing that the cost achieved by x? is no larger than the
cost achieved by any other vectors inside the feasible set,
which means x? is indeed a global minimizer to (P ).

Next we use the additional condition of
rank (Q− µ?J −Λ?) = 4(N + 1) − 1 to prove
±x? are the two unique global minimizers to (P ).
Denote M? = Q − µ?J − Λ?, since M? has only
one zero eigenvalue with associated eigenvector x?

(cf. KKT condition (A38)), its nullspace is defined by
ker(M?) = {x ∈ R4(N+1) : x = ax?, a ∈ R}. Now



denote the feasible set of (P ) as Ω(P ). It is clear to see
that any vector in Ω(P ) is a vertical stacking of N + 1
unit quaternions and thus must have 2-norm equal to√
N + 1. Since x? ∈ Ω(P ) is already true, in order for

any vector x = ax? in ker(M?) to be in Ω(P ) as well, it
must hold |a|‖x‖ =

√
N + 1 and therefore a = ±1, i.e.,

ker(M?) ∩ Ω(P ) = {±x?}. With this observation, we
can argue that for any x inside Ω(P ) that is not equal to
{±x?}, x cannot be in ker(M?) and therefore:

xT(M?)x > 0⇒ (A47)
xTQx > µ?xTJx+ xTΛ?x⇒ (A48)

tr
(
QxxT

)
> µ? = tr

(
Q(x?)(x?)T

)
, (A49)

which means for any vector x ∈ Ω(P )/{±x?}, it results
in strictly higher cost than ±x?. Hence ±x? are the two
unique global minimizers to (P ) and (iii) is true.

To prove (iv), notice that since strong duality holds
and f?DD = f?D, we can write the following according to
eq. (A35):

tr ((Q− µ?J −Λ?)Z?) = 0. (A50)

Since M? = Q − µ?J − Λ? � 0 and has rank
4(N + 1) − 1, we can write M? = M̄TM̄ with M̄ ∈
R(4(N+1)−1)×4(N+1) and rank

(
M̄
)

= 4(N+1)−1. Sim-
ilarly, we can write Z? = Z̄Z̄T with Z̄ ∈ R4(N+1)×r and
rank

(
Z̄
)

= r = rank (Z?). Then from (A50) we have:

tr (M?Z?) = tr
(
M̄TM̄Z̄Z̄T

)
= tr

(
Z̄TM̄TM̄Z̄

)
= tr

(
(M̄Z̄)T(M̄Z̄)

)
= ‖M̄Z̄‖2F = 0, (A51)

which gives us M̄Z̄ = 0. Using the rank inequality
rank

(
M̄Z̄

)
≥ rank

(
M̄
)

+ rank
(
Z̄
)
− 4(N + 1), we

have:

0 ≥ 4(N + 1)− 1 + r − 4(N + 1)⇒
r ≤ 1. (A52)

Since Z̄ 6= 0, we conclude that rank (Z?) = rank
(
Z̄
)

=
r = 1. As a result, since rank (Z?) = 1, and the rank con-
straint was the only constraint we dropped when relaxing
the QCQP (P ) to SDP (DD), we conclude that the relax-
ation is indeed tight. In addition, the rank 1 decomposition
Z̄ of Z? is also the global minimizer to (P ). However,
from (iii), we know there are only two global minimizers to
(P ): x? and −x?, so Z̄ ∈ {±x?}. Since the sign is irrel-
evant, we can always write Z? = (x?)(x?)T, concluding
the proof for (iv). �

E.3. Strong duality in noiseless and outlier-free case

Now we are ready to prove Theorem 7 using Theo-
rem A6. To do so, we will show that in the noiseless and

outlier-free case, it is always possible to construct µ? and
Λ? from x? andQ such that (x?, µ?,Λ?) satisfies the KKT
conditions, and the dual matrix M? = Q − µ?J − Λ? is
positive semidefinite and has only one zero eigenvalue.

Preliminaries. When there are no noise and outliers in
the measurements, i.e., bi = Rai,∀i = 1, . . . , N , we have
‖bi‖2 = ‖ai‖2,∀i = 1, . . . , N . Moreover, without loss
of generality, we assume σ2

i = 1 and c̄2 > 0. With these
assumptions, we simplify the blocksQ0i andQii in the ma-
trixQ, cf. (A19) and (A12):

Q0i = ‖ai‖2
2 I4 + Ω1(b̂i)Ω2(âi)

2 − c̄2

4 I4, (A53)

Qii = ‖ai‖2I4 + Ω1(b̂i)Ω2(âi) + c̄2

2 I4. (A54)

Due to the primal feasibility condition (A39), we know
x? can be written asN+1 quaternions (cf. proof of (A16)):
x? = [(q?)T θ?1(q?)T . . . θ?N (q?)T]T, where each θ?i is a
binary variable in {−1,+1}. Since we have assumed no
noise and no outliers, we know θ?i = +1 for all i’s and
therefore x? = [(q?)T (q?)T . . . (q?)T]T. We can write
the KKT stationary condition in matrix form as:

M?=Q−µ?J−Λ?︷ ︸︸ ︷
−µ?I4−
N∑

i=1
Λ?

ii
Q01 . . . Q0N

Q01 Q11+Λ?
11 . . . 0

...
...

. . .
...

Q0N 0 . . . QNN+Λ?
NN



x?︷ ︸︸ ︷
q?

q?

...
q?

 = 0

(A55)

and we index the block rows of M? from top to bottom as
0, 1, . . . , N . The first observation we make is that eq. (A55)
is a (highly) under-determined linear system with respect to
the dual variables (µ?,Λ?), because the linear system has
10N + 1 unknowns (each symmetric 4 × 4 matrix Λ?

ii has
10 unknowns, plus one unknown from µ?), but only has
4(N + 1) equations. To expose the structure of the linear
system, we will apply a similarity transformation to the ma-
trixM?. Before we introduce the similarity transformation,
we need additional properties about quaternions, described
in the Lemma below. The properties can be proven by in-
spection.

Lemma A7 (More Quaternion Properties). The following
properties about unit quaternions, involving the linear op-
erators Ω1(·) and Ω2(·) introduced in eq. (8) hold true:

(i) Commutative: for any two vectors x,y ∈ R4, The fol-
lowing equalities hold:

Ω1(x)Ω2(y) = Ω2(y)Ω1(x); (A56)
Ω1(x)ΩT

2 (y) = ΩT
2 (y)Ω1(x); (A57)

ΩT
1 (x)Ω2(y) = Ω2(y)ΩT

1 (x); (A58)
ΩT

1 (x)ΩT
2 (y) = ΩT

2 (y)ΩT
1 (x). (A59)



(ii) Orthogonality: for any unit quaternion q ∈ S3, Ω1(q)
and Ω2(q) are orthogonal matrices:

Ω1(q)ΩT
1 (q) = ΩT

1 (q)Ω1(q) = I4; (A60)
Ω2(q)ΩT

1 (q) = ΩT
2 (q)Ω1(q) = I4. (A61)

(iii) For any unit quaternion q ∈ S3, the following equali-
ties hold:

ΩT
1 (q)q = ΩT

2 (q)q = [0, 0, 0, 1]T. (A62)

(iv) For any unit quaternion q ∈ S3, denote R as the
unique rotation matrix associated with q, then the fol-
lowing equalities hold:

Ω1(q)ΩT
2 (q) = ΩT

2 (q)Ω1(q) =

[
R 0
0 1

]
.
= R̃; (A63)

Ω2(q)ΩT
1 (q) = ΩT

1 (q)Ω2(q) =

[
RT 0
0 1

]
.
= R̃T. (A64)

Rewrite dual certificates using similarity transform.
Now we are ready to define the similarity transformation.
We define the matrix D ∈ R4(N+1)×4(N+1) as the follow-
ing block diagonal matrix:

D =


Ω1(q?) 0 · · · 0

0 Ω1(q?) · · · 0
...

...
. . .

...
0 0 · · · Ω1(q?)

 . (A65)

It is obvious to see that D is an orthogonal matrix from (ii)
in Lemma A7, i.e., DTD = DDT = I4(N+1). Then we
have the following Lemma.

Lemma A8 (Similarity Transformation). Define N? .
=

DTM?D, then:

(i) N? andM? have the same eigenvalues, and

M? � 0⇔N? � 0, rank (M?) = rank (N?) . (A66)

(ii) Define e = [0, 0, 0, 1]T and r = [eT eT . . . eT]T as
the vertical stacking of N + 1 copies of e, then:

M?x? = 0⇔N?r = 0. (A67)

Proof. Because DTD = I4(N+1), we have DT = D−1

and N? = DTM?D = D−1MTD is similar to M?.
Therefore, by matrix similarity,M? andN? have the same
eigenvalues, and M? is positive semidefinite if and only if
N? is positive semidefinite [4, p. 12]. To show (ii), we start

by pre-multiplying both sides of eq. (A55) byDT:

M?x? = 0⇔DTM?x? = DT0⇔ (A68)
(DDT = I4(N+1))

DTM?(DDT)x? = 0⇔ (A69)
(DTM?D)(DTx?) = 0⇔ (A70)

(ΩT
1 (q?)q? = e from (iii) in Lemma A7)

N?r = 0, (A71)

concluding the proof. �

Lemma A8 suggests that constructing M? � 0 and
rank (M?) = 4(N + 1) − 1 that satisfies the KKT con-
ditions (A38) is equivalent to constructing N? � 0 and
rank (N?) = 4(N + 1) − 1 that satisfies (A71). We then
study the structure of N? and rewrite the KKT stationary
condition.

Rewrite KKT conditions. In noiseless and outlier-
free case, the KKT condition M?x? = 0 is equivalent to
N?r = 0. Formally, after the similarity transformation
N? = DTM?D, the KKT conditions can be explicitly
rewritten as in the following proposition.

Proposition A9 (KKT conditions after similarity transfor-
mation). The KKT conditionN?r = 0 (which is equivalent
to eq. (A55)) can be written in matrix form:
−

N∑
i=1

Λ̄?
ii Q̄01 . . . Q̄0N

Q̄01 Q̄11+Λ̄?
11 . . . 0

...
...

. . .
...

Q̄0N 0 . . . Q̄NN+Λ̄?
NN



e
e
...
e

 = 0. (A72)

with µ? = 0 being removed compared to eq. (A55) and Q̄0i

and Q̄ii, i = 1, . . . , N are the following sparse matrices:

Q̄0i
.
= ΩT

1 (q?)Q0iΩ1(q?)

=

[ (
‖ai‖2

2 − c̄2

4

)
I3 −

[ai]
2
×

2 − aia
T
i

2 0

0 − c̄
2

4

]
; (A73)

Q̄ii
.
= ΩT

1 (q?)QiiΩ1(q?)

=

[ (
‖ai‖2 + c̄2

2

)
I3 − [ai]

2
× − aiaT

i 0

0 c̄2

2

]
, (A74)

and Λ̄?
ii
.
= ΩT

1 (q?)Λ?
iiΩ1(q?) has the following form:

Λ̄?
ii =

[
Eii αi
αT
i λi

]
, (A75)

where Eii ∈ Sym3×3,αi ∈ R3 and λi ∈ R.

Proof. We first prove that Q̄0i and Q̄ii have the forms
in (A73) and (A74) when there are no noise and outliers



in the measurements. Towards this goal, we examine the
similar matrix to Ω1(b̂i)Ω2(âi) (as it is a common part to
Q0i andQii):

ΩT
1 (q?)Ω1(b̂i)Ω2(âi)Ω1(q?)

(Commutative property in Lemma A7 (i))

= ΩT
1 (q?)Ω1(b̂i)Ω1(q?)Ω2(âi) (A76)

(Orthogonality property in Lemma A7 (ii))

= ΩT
1 (q?)Ω2(q?)ΩT

2 (q?)Ω1(b̂i)Ω1(q?)Ω2(âi) (A77)
(Lemma A7 (i) and (iv))

= (R̃?)TΩ1(b̂i)Ω
T
2 (q?)Ω1(q?)Ω2(âi) (A78)

(Lemma A7 (iv) )

= (R̃?)TΩ1(b̂i)(R̃
?)Ω2(âi) (A79)

=

[
(R?)T[bi]×R

? (R?)Tbi
−bTi R? 0

]
Ω2(âi) (A80)

=

[
[ai]× ai
−aT

i 0

] [
−[ai]× ai
−aT

i 0

]
(A81)

=

[
−[ai]

2
× − aiaT

i 0
0 −‖ai‖2

]
. (A82)

Using this property, and recall the definition ofQ0i andQii

in eq. (A53) and (A54), the similar matrices toQ0i andQii

can be shown to have the expressions in (A73) and (A74)
by inspection.

Showing Λ̄ii having the expression in (A75) is
straightforward. Since Λ?

ii is symmetric, Λ̄?
ii =

ΩT
1 (q?)Λ?

iiΩ1(q?) must also be symmetric and therefore
eq. (A75) must be true for some Eii, αi and λi.

Lastly, in the noiseless and outlier-free case, µ? is zero
due to the following:

µ? = tr
(
Q(x?)(x?)T

)
(Recall Q from eq. (A19) )

= (q?)T
(∑N

i=1(Qii + 2Q0i)
)

(q?) (A83)

= (q?)T
(

2
∑N
i=1 ‖ai‖2 + Ω1(b̂i)Ω2(âi)

)
(q?) (A84)

(Recall eq. (A7))

= 2
∑N
i=1 ‖ai‖2 − b̂Ti (q? ⊗ âi ⊗ (q?)−1) (A85)

= 2
∑N
i=1 ‖ai‖2 − bTi (R?ai) (A86)

= 2
∑N
i=1 ‖ai‖2 − ‖bi‖2 = 0. (A87)

concluding the proof. �

From KKT condition to sparsity pattern of dual vari-
able. From the above proposition about the rewritten KKT
condition (A72), we can claim the following sparsity pat-
tern on the dual variables Λ̄ii.

Lemma A10 (Sparsity Pattern of Dual Variables). The KKT
condition eq. (A72) holds if and only if the dual variables

{Λ̄ii}Ni=1 have the following sparsity pattern:

Λ̄?
ii =

[
Eii 03

03 − c̄
2

4

]
, (A88)

i.e., αi = 0 and λi = − c̄
2

4 in eq. (A75) for every i =
1, . . . , N .

Proof. We first proof the trivial direction (⇐). If Λ̄?
ii has

the sparsity pattern in eq. (A88), then the product of the
i-th block row of N? (i = 1, . . . , N ) and r writes (cf.
eq. (A72)): (

Q̄0i + Q̄ii + Λ̄?
ii

)
e

(Recall Q̄0i and Q̄ii from eq. (A73) and (A74))

=

[
? 03

03 0

] [
03

1

]
= 04, (A89)

which is equal to 04 for sure. For the product of the 0-th
block row (the very top row) ofN? and r, we get:(∑N

i=1 Q̄0i − Λ̄?
ii

)
e

=

[
? 03

03 0

] [
03

1

]
= 04, (A90)

which vanishes as well. Therefore, Λ̄?
ii having the sparsity

pattern in eq. (A88) provides a sufficient condition for KKT
condition in eq. (A72). To show the other direction (⇒),
first notice that eq. (A72) implies eq. (A89) holds true for
all i = 1, . . . , N and in fact, eq. (A89) provides the fol-
lowing equation for constraining the general form of Λ̄?

ii in
eq. (A75): (

Q̄0i + Q̄ii + Λ̄?
ii

)
e

=

[
? αi
αT
i λi + c̄2

4

] [
03

1

]
= 04, (A91)

which directly gives rise to:{
αi = 03

λi + c̄2

4 = 0
. (A92)

and the sparsity pattern in eq. (A88), showing that Λ̄?
ii hav-

ing the sparsity pattern in eq. (A88) is also a necessary con-
dition. �

Find the dual certificate. Lemma A10 further suggests
that the linear system resulted from KKT conditions (A72)
(also (A55)) is highly under-determined in the sense that
we have full freedom in choosing the Eii block of the dual
variable Λ̄?

ii. Therefore, we introduce the following propo-
sition.



Proposition A11 (Construction of Dual Variable). In the
noiseless and outlier-free case, choosing Eii as:

Eii = [ak]2× −
1

4
c̄2I3,∀i = 1, . . . , N (A93)

and choosing Λ̄?
ii as having the sparsity pattern in (A88)

will not only satisfy the KKT conditions in (A72) but also
make N? � 0 and rank (N?) = 4(N + 1) − 1. There-
fore, by Theorem A6, the naive relaxation in Proposition 6
is always tight and Theorem 7 is true.

Proof. By Lemma A10, we only need to prove the choice
of Eii in (A93) makes N? � 0 and rank (N?) = 4(N +
1)− 1. Towards this goal, we will show that for any vector
u ∈ R4(N+1), uTN?u ≥ 0 and the nullspace of N? is
ker(N?) = {u : u = ar, a ∈ R and a 6= 0} (N? has a
single zero eigenvalue with associated eigenvector r). We
partition u = [uT

0 u
T
1 . . . uT

N ]T, where ui ∈ R4,∀i =
0, . . . , N . Then using the form of N? in (A72), we can
write uTN?u as:

uTN?u = −
∑N
i=1 u

T
0 Λ̄iiu0 +

2
∑N
i=1 u

T
0 Q̄0iui +

∑N
i=1 u

T
i (Q̄ii + Λ̄ii)ui (A94)

=
N∑
i=1

uT
0 (−Λ̄ii)u0 + uT

0 (2Q̄0i)ui + uT
i (Q̄ii + Λ̄ii)ui︸ ︷︷ ︸

mi

.(A95)

Further denoting ui = [ūT
i ui]

T with ūi ∈ R3, mi can be
written as:

mi =

[
ū0

u0

]T [ −Eii 0

0 c̄2

4

] [
ū0

u0

]
+

[
ū0

u0

]T  (
‖ai‖2− c̄2

2

)
I3

−[ai]
2
×−aia

T
i

0

0 − c̄
2

2

[ ūi
ui

]
+

[
ūi
ui

]T  (
‖ai‖2+ c̄2

2

)
I3

−[ai]
2
×−aia

T
i +Eii

0

0 c̄2

4

[ ūi
ui

]
(A96)

= c̄2

4

(
u2

0 − 2u0ui + u2
i

)︸ ︷︷ ︸
=(u0−ui)2≥0

+ūT
0 (−Eii)ū0 +

ūT
0

(
‖ai‖2I3 − c̄2

2 I3 − [ai]
2
× − aiaT

i

)
ūi +

ūT
i

(
‖ai‖2I3 + c̄2

2 I3 − [ai]
2
× − aiaT

i +Eii

)
ūi, (A97)

where equality holds only when ui = u0 in the underbraced
inequality in (A97). Now we insert the choice of Eii in
eq. (A93) to mi to get the following inequality:

mi ≥ ūT
0 (−[ai]

2
×)ū0 + 1

4 c̄
2ūT

0 ū0 +

‖ai‖2ūT
0 ūi − c̄2

2 ū
T
0 ūi + ūT

0 (−[ai]
2
×)ūi − ūT

0aia
T
i ūi +

‖ai‖2ūT
i ūi + 1

4 c̄
2ūT

i ūi − ūT
i aia

T
i ūi. (A98)

Using the following facts:

‖ai‖2ūT
0 ūi = ūT

0 (−[ai]
2
× + aia

T
i )ūi; (A99)

‖ai‖2ūT
i ūi = ūT

i (−[ai]
2
× + aia

T
i )ūi, (A100)

eq. (A98) can be simplified as:

mi ≥ ūT
0 (−[ai]

2
×)ū0 + 1

4 c̄
2ūT

0 ū0 +

2ūT
0 (−[ai]

2
×)ūi − c̄2

2 ū
T
0 ūi +

ūT
i (−[ai]

2
×)ūi + 1

4 c̄
2ūT

i ūi (A101)

= ([ai]×ū0 + [ai]×ūi)
T

([ai]×ū0 + [ai]×ūi) +

c̄2

4

(
ūT

0 ū0 − 2ūT
0 ūi + ūT

i ūi
)

(A102)

= ‖ai × (ū0 + ūi)‖2 + c̄2

4 ‖ū0 − ūi‖2

≥ 0. (A103)

Since each mi is nonnegative, uTN?u ≥ 0 holds true for
any vector u and thereforeN? � 0 is true. To seeN? only
has one zero eigenvalue, we notice that uTN?u = 0 holds
only when:

ui = u0,∀i = 1, . . . , N

ū0 = ūi,∀i = 1, . . . , N

ai × (ū0 + ūi) = 03,∀i = 1, . . . , N

(A104)

because we have more than two ai’s that are not parallel
to each other, eq. (A104) leads to ū0 = ūi = 03,∀i =
1, . . . , N . Therefore the only set of nonzero vectors that sat-
isfy the above conditions are {u ∈ R4(N+1) : u = ar, a ∈
R and a 6= 0}. Therefore,N? has only one zero eigenvalue
and rank (N?) = 4(N + 1)− 1. �

Proposition A11 indeed proves the original Theorem 7
by giving valid constructions of dual variables under which
strong duality always holds in the noiseless and outlier-free
case. �

F. Proof of Proposition 8
Proof. Here we prove that eq. (20) is a convex relaxation
of eq. (18) and that the relaxation is always tighter, i.e. the
optimal objective of (20) is always closer to the optimal ob-
jective of (15), when compared to the naive relaxation (19).

To prove the first claim, we first show that the addi-
tional constraints in the last two lines of (20) are redun-
dant for (18), i.e., they are trivially satisfied by any feasible
solution of (18). Towards this goal we note that eq. (18)
is equivalent to (15), where x is a column vector stacking
N + 1 quaternions: x = [qT qT1 . . . qTN ]T, and where each
qi = θiq, θi ∈ {±1},∀i = 1, . . . , N . Therefore, we have:

[Z]qqi = qqTi = θiqq
T = qiq

T = (qqTi )T = [Z]Tqqi

[Z]qiqj = qiq
T
j = θiθjqq

T = qjq
T
i = (qiq

T
j )T = [Z]Tqiqj



This proves that the constraints [Z]qqi = [Z]Tqqi and
[Z]qiqj = [Z]Tqiqj are redundant for (18). Therefore, prob-
lem (18) is equivalent to:

min
Z�0

tr (QZ) (A105)

subject to tr ([Z]qq) = 1

[Z]qiqi = [Z]qq,∀i = 1, . . . , N

[Z]qqi = [Z]Tqqi ,∀i = 1, . . . , N

[Z]qiqj = [Z]Tqiqj ,∀1 ≤ i < j ≤ N
rank (Z) = 1

where we added the redundant constraints as they do not
alter the feasible set. At this point, proving that (20) is
a convex relaxation of (A105) (and hence of (18)) can be
done with the same arguments of the proof of Proposition 6:
in (20) we dropped the rank constraint (leading to a larger
feasible set) and the remaining constraints are convex.

The proof of the second claim is straightforward. Since
we added more constraints in (20) compared to the naive
relaxation (19), the optimal cost of (20) always achieves a
higher objective than (19), and since they are both relax-
ations, their objectives provide a lower bound to the original
non-convex problem (18). �

G. Benchmark against BnB

We follow the same experimental setup as in Section 6.1
of the main document, and benchmark QUASAR against (i)
Guaranteed Outlier Removal [7] (label: GORE); (ii) BnB
with L-2 distance threshold [2] (label: BnB-L2); and (iii)
BnB with angular distance threshold [7] (label: BnB-Ang).
Fig. A1 boxplots the distribution of rotation errors for 30
Monte Carlo runs in different combinations of outlier rates
and noise corruptions. In the case of low inlier noise
(σ = 0.01), QUASAR is robust against 96% outliers and
achieves significantly better estimation accuracy compared
to GORE, BnB-L2 and BnB-Ang, all of which experience fail-
ures at 96% outlier rates (Fig. A1(a,b)). In the case of high
inlier noise (σ = 0.1), QUASAR is still robust against 80%
outlier rates and has lower estimation error compared to the
other methods.

H. Image Stitching Results

Here we provide extra image stitching results. As men-
tioned in the main document, we use the Lunch Room im-
ages from the PASSTA dataset [6], which contains 72 im-
ages in total. We performed pairwise image stitching for 12
times, stitching image pairs (6i+1, 6i+7) for i = 0, . . . , 11
(when i = 11, 6i + 7 = 73 is cycled to image 1). The
reason for not doing image stitching between consecutive
image pairs is to reduce the relative overlapping area so that

SURF [1] feature matching is more prone to output outliers,
creating a more challenging benchmark for QUASAR.

QUASAR successfully performed all 12 image stitching
tasks and Table A1 reports the statistics. As we mentioned
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Figure A1. Rotation estimation error by QUASAR, GORE, BnB-L2
and BnB-Ang on (a) 0 − 90% outlier rates with low inlier noise,
(b) 91 − 96% outlier rates with low inlier noise and (c) 0 − 90%
outlier rates with high inlier noise.



Mean SD
SURF Outlier Ratio 14% 18.3%

Relative Duality Gap 1.40e−09 2.18e−09
Rank 1 0

Stable Rank 1 + 8.33e−17 2.96e−16
Table A1. Image stitching statistics (mean and standard deviation
(SD)) of QUASAR on the Lunch Room dataset [6].

in the main document, the stitching of image pair (7,13)
was the most challenging, due to the high outlier ratio of
66%, and the RANSAC-based stitching method [8, 5] as im-
plemented by the Matlab “estimateGeometricTransform” func-
tion failed in that case. We show the failed example from
RANSAC in Fig. A2.
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Figure A2. RANSAC-based image stitching algorithm as imple-
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