
Aligning Latent Spaces for 3D Hand Pose Estimation
Supplementary Material

Linlin Yang∗1, Shile Li∗2, Dongheui Lee2,3, Angela Yao4

∗Equal contribution
1University of Bonn, Germany 2 Technical University of Munich, Germany

3German Aerospace Center, Germany 4National University of Singapore, Singapore

Section A provides the formulation of Viewpoint Cor-
rection in the main manuscripts; Section B provides the de-
tails of our network architectures. More results and abla-
tion studies are presented in Section C and Section D re-
spectively. The use of corresponding data is discussed in
Section E. Note that all the notation and abbreviations here
are consistent with the main manuscript.

A. Viewpoint Correction
The aim of viewpoint correction is to rotate the 3D hand,

such that the 3D centroid of the hand aligns with the cam-
era’s z-axis. More specifically, if we assume that the crop’s
center coordinates on the original image is [uc, vc], the ro-
tation matrix Rvc ∈ R3×3 to correct for the viewing angle
can be obtained as follows:

αy = atan2(uc − ox, f),
c̃ = Ry(−αy) · [uc − ox, vc − oy, f ]T ,
αx = atan2(c̃2, c̃3),

Rvc = Ry(−αy) ·Rx(αx),

(1)

whereas f is the camera focal length, ox, oy are the cam-
era center coordinates, c̃ is an intermediate result and αx,ys
are rotation angles around corresponding axis. After view-
point correction, the 3D poses and point clouds are sub-
tracted with the hand’s centroid point and normalized to a
canonical size.

B. Model Architectures
In this section, we list the detailed parameters for the var-

ious encoders and decoders. For encoding RGB images, we
use ResNet-18 [2]; for encoding point clouds, we use Re-
sPEL [4]; for decoding heatmaps, we follow the decoder
architecture DCGAN [6]; for decoding point clouds, we
follow the decoder architecture FoldingNet [9]; for decod-
ing 3D hand poses, we use four fully connected layers with
Relu. Specific architecture details of the encoders and de-
coders are given in Tables 1-5.

Encoder for RGB hand images

Input: RGB image x

ResNet-18
FC-(N64)

Table 1: The encoder architecture for hand RGB images. We use
256 × 256 RGB images as the input of ResNet-18 [2] and set the
dimensionality of latent variable z to 64.

Encoder for point cloud

Input: Point cloud w1

ResPEL-(N64, × 7)
ResPEL-(N256, × 7)
ResPEL-(N512, × 7)
Point to hidden unit voting(N128)
FC-(N128), BN, Relu
FC-(N64), Tanh

Table 2: The encoder architecture for point clouds. We use 256×3
point clouds as the input of ResPEL [4] and set the dimensionality
of latent variable z to 64.

Abbreviations: N for number of kernels or neurons, FC
stands for fully connected layers, CONV stands for convo-
lutional layers with 1× 1 kernels, stride of size 1 and with-
out padding, TCONV stands for transposed convolutional
layers with 5 × 5 kernels, stride of size 2 and padding of
‘SAME’, BN stands for batch normalization layers. For ex-
ample, FC-(N512) refers to a fully connected layer with 512
neurons. ResPEL(N64, × 7) stands for one Residual Per-
mutation Equivariant Layer block [4] with 64 hidden neu-
rons and 7 layers.

C. Additional Results
In this section, we show more results on RHD and STB,

and add experiments on Dexter+Object dataset. In Fig. 1,



Figure 1: More examples on 3D pose estimation and point cloud reconstruction for RHD (top) and STB (bottom) dataset. From top to
bottom: RGB images, ground-truth poses in blue, estimated poses from zrgb in red, ground-truth point clouds, reconstructed point clouds
from zrgb. The color for point clouds decodes the depth information, closer points are more red and further points are more blue. Note that
the ground-truth point clouds are not used for inference, it is shown here only for comparison purpose.



Decoder for heatmaps

Input: Latent variable z

FC-(N8192)
Reshape(8,8,128), BN
TCONV-(N64), BN, Relu
TCONV-(N32), BN, Relu
TCONV-(N21), Sigmoid

Table 3: The decoder architecture for heatmaps. The final shape
is (64,64,21) for heatmaps.

Decoder for point clouds

Input: Latent variable z

Fold1

Concat(z,init)
CONV-(N256), BN, Relu
CONV-(N512), BN, Relu
CONV-(N1024), BN, Relu
CONV-(N512), BN, Relu
CONV-(N3), BN, Tanh

Output middleOutput

Fold2

Concat(z,middleOutput)
CONV-(N256), BN, Relu
CONV-(N512), BN, Relu
CONV-(N1024), BN, Relu
CONV-(N512), BN, Relu
CONV-(N3), BN, 3*Tanh

Table 4: The decoder architecture for point clouds with Fold-
ingNet [9]. The final shape is (256,3,1) for point clouds.

Decoder for 3D hand poses

Input: Latent variable z

FC-(N128),Relu
FC-(N128),Relu
FC-(N128),Relu
FC-(N63)

Table 5: The decoder architecture for 3D hand poses. The final
shape is (21,3,1) for 3D hand poses.

we show some qualitative examples of poses and point
clouds decoded from the zrgb. The 3D poses and point
clouds can be successfully reconstructed from the same la-
tent variable z. In Fig. 2, we compare the PCK curve of
our approach with other state-of-the-art methods [3, 5] on
Dexter+Object dataset following [3, 5]. We can see that our
method outperform [3, 5]. Note that this comparison is un-
fair since our method use both the best hand root position
and the best global scale here.

20 40 60 80 100
Error threshold (mm)

0.2

0.4

0.6

0.8

1.0

3D
 P

CK

Mueller et al. (AUC=0.700)
Iqbal et al. (AUC=0.710)
Ours (AUC=0.728)

Figure 2: AUC: Comparison to state-of-the-art methods on the
Dexter+Object dataset. Ours refers to S4 in Table 1 (RC2CHP).

20 25 30 35 40 45 50
Error threshold (mm)

0.80

0.85

0.90

0.95

1.00

3D
 P
CK

Alg.1 of [19] (AUC=0.915)
S4(RD2DHP) (AUC=0.921)
S4(RC2CHP) (AUC=0.943)

Figure 3: Ablation Study: Our S4, “RC2CHP” and “RD2DHP”
vs [7] “RC2CHP” on the RHD dataset.

D. Ablation Study

We prefer point clouds instead of standard depth maps,
due to superior performance of using point clouds. To com-
pare the two modalities, we use depth maps (D) instead of
point clouds in our S4. The decrease in performance us-
ing depth maps vs point clouds is shown in Fig. 3 (orange
vs green). For encoding and decoding depth maps, we fol-
low the architecture DCGAN [6]. To show the effectiveness
and efficiency of our S4 training strategy, we compare our
strategy with [7]’s iterative training strategy. We use the
same encoder/decoder network architectures, same modali-
ties (i.e. RGB, point clouds and heatmap), same hyperpa-
rameters and directly use their iterative training strategy
to train “RC2CHP”. We show the results in Fig. 3 (green
vs blue). We observe that our S4 outperforms [7]’s strat-
egy and also converges faster (our 50 epochs vs. their 600
epochs).



E. Corresponding data
We utilize corresponding data pairs to align the latent

space; this is our main contribution. With the aid of cor-
responding data, our training strategy, using a joint ob-
jective, can converge much faster and get better joint rep-
resentations. If S4 uses only non-corresponding data in
semi-/weakly-supervised setting, this deteriorates the qual-
ity of the latent alignment; pose accuracy is reduced by
∼2mm. Corresponding data is generally required for joint
objective training and concurrent works have the same re-
quirement [1, 8]. This is not too much of a restriction
in practice because there are several existing multi-modal
datasets (e.g. NYU, SynthHands, HandDB) and synthetic
multimodal data is easy to obtain. If corresponding data
is limited, different encoders can be pre-trained on large
amounts of non-corresponding data separately and then
aligned using limited amount of corresponding data. Our
semi-/weakly-supervised setting only needs small number
of RGBD-pose pairs to align the latent space and the ma-
jority of training relies only on RGB-depth pairs (by setting
the weighting of the pose estimation loss to zero), which
can be easily recorded with any RGBD sensor. Compared
to our baseline S1 which is fully supervised, we are more
accurate with only 25% of RGBD-pose pairs.

References
[1] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan.

Weakly-supervised 3d hand pose estimation from monocular
rgb images. In ECCV, 2018. 4

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1

[3] Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall,
and Jan Kautz. Hand pose estimation via latent 2.5 d heatmap
regression. In ECCV, 2018. 3

[4] Shile Li and Dongheui Lee. Point-to-pose voting based hand
pose estimation using residual permutation equivariant layer.
In CVPR, 2019. 1

[5] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko,
Dushyant Mehta, Srinath Sridhar, Dan Casas, and Christian
Theobalt. Ganerated hands for real-time 3d hand tracking
from monocular rgb. In CVPR, 2018. 3

[6] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional genera-
tive adversarial networks. arXiv preprint arXiv:1511.06434,
2015. 1, 3

[7] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.
Cross-modal deep variational hand pose estimation. In CVPR,
2018. 3

[8] Linlin Yang and Angela Yao. Disentangling latent hands for
image synthesis and pose estimation. In CVPR, 2019. 4

[9] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In CVPR, 2018. 1, 3


