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To make our submission self-contained, the supplemen-
tary document provides additional details in: 1) The fea-
ture extractor used for constructing feature pyramids; 2)
Query-Scene Registration; 3) Iterative Scene Coordinate
Prediction; 4) Training; 5) Query Pose Estimation via
RANSC+PnP[1]. In the End, we provide additional anal-
ysis and coordinate map examples.

1. Pipeline Details

Feature Extractor We use DRN38[5] as our backbone fea-
ture extractor for constructing both scene feature pyramid
{Fl

s} and query image feature pyramid {El}. Figure 2 lists
the backbone network structure with the output feature map
for each level l.
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Figure 1: Comprehensive view of QSR module, the detailed
components and operations are marked with blue rectangles
and line.

Query-Scene Registration Figure 1 shows the comprehen-
sive view of Query-Scene Registration module. Comparing
with the Fig.3 in main text (Sec 4.2), we detail two com-
ponents and an operation in the following. The MLP con-
sists of a Fully-Connected (FC) layer followed by
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Figure 2: Feature Extractor (DRN38[5]) structure



Batch Normalization (BN) and ReLU activation,
while the PointNet has two FC-BN-ReLU blocks with
one skip connection, and a MaxPooling in the end.

Recall that in QSR module, for one specific pixel p de-
fined in finer levels l > 1, we sample points Sl

sub from
scene pyramid Sl that are close to the previous up-sampled
coordinate up(Ŷl−1)[p]. During the sampling, we normal-
ize the 3D scene space represented by Sl

sub through sub-
tracting up(Ŷl−1)[p] from xyz coordinates {x̃l

i} to reduce
the input space for better generalization. Later, we addi-
tionally append up(Ŷl−1)[p] into Rl[p] to provide enough
information for recovering the normalized 3D scene space
represented by Sl

sub.

Iterative Scene Coordinate Prediction Recall that after
getting the scene reference feature Rl from the QSR mod-
ule, we further fuse the image contextual information then
compute the prediction at level l. To reduce the network size
and avoid over-smoothed results, we do not fuse the image
context at the final level l = 5. Instead, we directly decode
R5 by a 1× 1 Conv to get the prediction.

Training For pixel p at level l, if its ground-truth coordinate
does not locate inside the sphere when sampling Sl

sub, we
discard the gradient of that pixel.

Query Pose Estimation We follow DSAC++[1] and pro-
vide details in finding the best hypothesis h∗ and estimating
the final pose Θq of query frame from h∗. Recall that we
build the hypothesis pose set H = {hj |j = 1, ..., k} by
solving the PnP problem[2] for each randomly sampled 4-
point tuple from predicted scene coordinate map Ŷ. We
then find the best hypothesis that is most coherent with the
predicted scene coordinate. In particular, each hypothesis is
scored with counted inliers. Given a pose hypothesis h, the
scoring function is defined as:

ξ(h) =
∑
p∈Ŷ

sig(β(γ − π(h, Ŷ[p]))), (1)

where the hyper-parameter β controls the softness of the
sigmoid function sig(·), and the variable γ is a manually
defined parameter indicating the inlier threshold. The func-
tion π(h, Ŷ[p]) defines the reprojection error at pixel p un-
der the hypothesis pose h as follows,

π(h, Ŷ[p]) =
∥∥∥Kh−1Ŷ[p]− xp

∥∥∥ . (2)

To obtain the final camera pose Θq , the hypothesis with
the highest score is selected first,

h∗ = arg max
h

ξ(h).

Next, initialized by h∗, the final camera pose Θq is re-
fined iteratively by first selecting the inliers from all coordi-
nates of which the reprojection error is lower than the inlier

threshold γ, then camera pose is optimized by involving all
newly selected inliers.

For experiments, we sample 128 hypotheses from pre-
dicted coordinate map. We set hyper-parameter β = 4.0,
the inlier threshold γ = 0.5 for outdoor scene and γ = 0.75
for indoor scene respectively. In terms of refinement, we it-
erate the process (i.e. select inliers and optimize pose) until
convergence or 100 times.

2. Additional Analysis

Additional Coordinate Map Prediction Examples Fig-
ure 4 shows 6 additional examples of scene coordinate map
comparison on 7Scenes[3] dataset.

Fine-tuning on Outdoor Dataset We investigate the ef-
fect of fine-tuning in this section. The fine-tuning is neces-
sary due to the distribution gap between indoor and outdoor
images. As shown in Table 1, without fine-tuning (F.T.),
the performance degrades gently on 4 outdoor scenes. In
general, if sufficient outdoor data is given, a common in-
door/outdoor model could be trained.

Table 1: Pose median error w/ or w/o fine-tuning (F.T)

K. College O. Hospital S. Facade S.M Church
w/o F.T. 0.76◦0.39m 0.47◦0.34m 0.56◦0.15m 0.84◦0.23m
w/ F.T. 0.54◦0.32m 0.53◦0.32m 0.47◦0.10m 0.57◦0.16m

Reliance on Retrieval Quality and Number of Images in
the Scene Pyramid
To quantify the influence of retrieval quality, we simulate
different levels of retrieval quality by keeping the top k re-
trieval results and replace the rest of the 10 retrieved images
with least scored ones. To test the effect of the number of
images in the scene pyramid, we use the top k retrieved im-
ages to construct the scene pyramid. The performances are
measured by the ratio of pose errors that are less than (5◦,
5cm) on 7Scenes. As shown in Figure 3, even with the worst
retrieval quality or only 1 image in the scene pyramid, our
method could still localize more than 50% queries.
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Figure 3: Pose accuracy w.r.t Retrieval quality and Num-
ber of images in the scene pyramid

Time w.r.t Database Scale We also investigate how the
running time of our pipeline scales w.r.t number of scene



images. As shown in Table 2, the time of indexing all
scene images and image retrieval increases linearly, while
the pose estimation takes a constant time as we only retrieve
a fixed number (i.e. 10) of scene images.

Table 2: Time of each step w.r.t number of scene images.

Steps 500 imgs. 1000 2000 5000 7000
Index. VLAD feat.
(all scene imgs.) 23s 50s 128s 263s 427s

Retrieval (per query) 16ms 27ms 61.8ms 123ms 171ms
Estimate Pose (per query) 0.37s 0.37s 0.37s 0.37s 0.37s
Total (per query) 0.39s 0.40s 0.43s 0.49s 0.54s
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Figure 4: Additional examples of scene coordinate map comparison with InLoc [4] and the ground truth (G.T.) on 7Scenes [3],
the scene coordinate positions xyz are encoded in rgb channels for visualization. The last three columns show the geometry
(Geo.) comparison by reconstructing the mesh from the scene coordinate map.


