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1. Mapping the Predicates from VRD and VG to SpatialSense
In section 4.1, in order to make the three datasets comparable, we map the spatial predicates in VRD and Visual Genome

to their equivalents in SpatialSense. Here we describe the detailed mapping in Table A.
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Table A: We map the spatial predicates in VRD and Visual Genome to our predefined list of 9 predicates. We mannually
check all predicates in VRD to figure out the mapping. For Visual Genome, since there is no closed vocabulary, we examined
the top-100 most frequent predicates.

2. Model Architectures
We describe in details the architectures of the models used in our submission (Fig. A, B, C and D). We always add batch

normalization [Ioffe and Szegedy, 2015] and ReLU [Nair and Hinton, 2010] non-linearity after each parametric layer except
the output. Word embeddings are 300-dimensional and computed by a pretrained Word2Vec [Mikolov et al., 2013] model.
All models are implemented using Pytorch [Paszke et al., 2017].
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Figure A: In adversarial crowdsourcing (section 3 in our submission), the architecture of the robot is an ensemble of a
language-only model and a 2D-only model. The language-only model takes two object names along with the predicate
(“microwave oven”, “on”, “counter”), and outputs a score for the relation to hold (1.54). The word embeddings of object
names are encoded into 512-dimensional vectors by a gated recurrent unit (GRU) [Cho et al., 2014] of 512 hidden units.
The same GRU is shared between the subject and the object. The one hot encoding of the predicate is mapped to a 512-
dimensional vector by a linear layer. The three feature vectors are fused by element-wise addition, on top of which a 2-layer
fully connected network (with 256 hidden units) outputs the score. For the 2D-only model, linear layers map the object
coordinates to 512-dimensional vectors, and others remain the same. The final output is the average of these two models.
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(b) The 2D-only model.

Figure B: When classifying the predicates in VRD-Spatial, VG-Spatial and SpatialSense-Positive (table 1 in our submis-
sion), we also have a language-only model and a 2D-only model. The architectures are similar to the robot; but there are
three differences: (1) The branch for the input predicate is removed, since the task now is to predict the predicate. (2) The
output layers now have dimension 9 instead of 1. (3) The object 2D locations are encoded by bounding boxes.
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Figure C: These are the language and 2D baselines for spatial relation recognition (section 5 in our submission), which
are also used when quantifying the effect of adversarial crowdsourcing (table 2 in our submission). The architectures are
the same as the robot, but the object 2D locations are encoded by bounding boxes (They are annotated in a separate process
and therefore not available during adversarial crowdsourcing).
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(a) The DRNet [Dai et al., 2017] contains a spatial module and an appearance module, which respectively encode the masks of the bounding
boxes and image cropped at the union bounding box into 256-dimensional feature vectors. The spatial module contains a hourglass
network [Newell et al., 2016], which we find to perform better than a simple stack of convolutional layers. The appearance module is a
linear layer on top of a ResNet18 [He et al., 2016] network. The spatial and appearance features as well as the object name features go
through an iterative reasoning module that makes extensively use of weight-sharing; all layers with the same name (e.g. fc4) share the same
weights. Unlike in the original DRNet paper, we do not perform iterative updates to the object name features, because they are given as
ground truth in our task.
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(b) For VtransE [Zhang et al., 2017], the bounding boxes are encoded as in the original paper. Image features are also extracted by a
ResNet18 network.

Figure D: The specific instance of DRNet and VTransE we use for spatial relation recognition (section 5 in our submission).
The input relation is “microwave oven on counter”. The final output is therefore the score for the predicate “on”.
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