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S1. Introduction

This supplemental material contains four parts:

• the proofs of theoretic results presented in Section 4 of

the main paper (Section S2),

• full details of comparison of 31 superpixel methods on

five image datasets (Section S3),

• full details of comparison of 8 supervoxel methods on

four video datasets (Section S4),

• full details of comparisons in one image and two video

applications (Section S5).

S2. Proofs of Theoretic Results in Section 4

In the main paper, both images and videos are mapped

into ζ-dimensional manifold Mζ embedded in R
d, ζ = 2, 3,

ζ < d, that is, mapping an image to M2 ⊂ R
5 and a video

to M3 ⊂ R
6. A common characteristic of these manifolds

Mζ ⊂ R
d is that the geodesic metric — which defines the

lengths, area or volumes on Mζ — gives a good measure of

the content density in images and videos. Let X = {xi}Ni=1

be an N -atom media (i.e., either an image or a video) and

Mζ = Φ(X) the stretched manifold in R
d.

In this section, we prove a proposition, indicating that

if the shape of manifold M satisfies certain assumptions

(characterized by the edge length ratio
lmax(Vi)
lmin(Vi)

) and K is

sufficiently large (characterized by the working area Ξ(ĉi)),
the clustering {Vi}Ki=1 on G is exactly the same for using

either shortest distance or q-distance.

In Section 4 of the main paper, we present three proper-

ties. In this section, we also present their proofs.

Recall that we discretize the manifold Mζ by a graph

G = {V,E}, V is the vertex set {vi = Φ(xi)}Ni=1, ∀xi ∈
X , and there is an edge e = (vi, vj) in the edge set E, if

Φ−1(vi) and Φ−1(vj) are nζ-neighbors in X:
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• nζ = 8 for ζ = 2: i.e., for X being an image,

Φ−1(vi) = (ri, si) and Φ−1(vj) = (rj , sj) are 8-

neighbors, if ‖ri − rj‖2 ≤ 1 and ‖si − sj‖2 ≤ 1.

• nζ = 26 for ζ = 3: i.e., for X being a video,

Φ−1(vi) = (ri, si, ti) and Φ−1(vj) = (rj , sj , tj) are

26-neighbors, if ‖ri − rj‖2 ≤ 1, ‖si − sj‖2 ≤ 1 and

‖ti − tj‖2 ≤ 1.

Given the fixed set of centers C = {ci}Ki=1 ⊂ V as multi-

ple sources, we assign an index Ii to each vertex vi ∈ V
based on the predefined traversal order {v1 = c1, v2 =
c2, · · · , vK = cK , vK+1, vK+2, · · · , vN} by the FIFO

queue. Then the q-path c̃vi = {vIi1 = c, vIi2 , · · · , vIin =
vi} from a center c ∈ C to a vertex vi ∈ V \ C, the output

from Algorithm 2, satisfies that ∀ia, ib, 1 ≤ a < b ≤ n, the

indices Iia < Iib .

Proposition 1. Given a fixed set of centers C = {ci}Ki=1 ⊂
V , denote the clustering of V w.r.t. C on G as {Vi}Ki=1,
where Vi = {v ∈ V : d(ci, v) < d(cj , v), i �= j}
and d is an arbitrary distance. Denote the clustering
under geodesic distance as {Vi|dg

}Ki=1. For each center
ci ∈ C, we define the maximal and minimal edge lengths
in Vi|dg

as lmax(Vi|dg
) = maxe=(va,vb)∈E{le = ‖vi −

vj‖2, va, vb ∈ Φ(CH(Φ−1(Vi|dg
)))} and lmin(Vi|dg

) =
mine=(va,vb)∈E{le = ‖vi−vj‖2, va, vb ∈ Vi∪Nb(Vi)|dg},
where CH(A) is the convex hull of a region A ∈ X and
Nb(Vi) is the union of all neighboring Va of Vi, a �= i.
Denote the inverse mapping of C = {ci}nc

i=1 ⊂ V back
into the media X as Ĉ = {ĉi}nc

i=1 ⊂ I , ĉi = Φ−1(ci),
∀i. For each mapped center ĉi ∈ Ĉ, we define its work-
ing area in X as Ξ̂(ĉi) =

⋂
ĉj∈ ̂C,i �=j Ξ̂(ĉi, ĉj), where

Ξ̂(ĉi, ĉj) = {x ∈ I :
lmax(Vi|dg )
lmin(Vj |dg ) ‖x, ĉi‖M ≤ ‖x, ĉj‖M}

and ‖ ‖M is the Manhattan distance. Then the clustering
{Vi}Ki=1 on G is the same for the geodesic distance d = dg
and the q-distance d = dq , if each cluster Vi ⊆ Ξ(ĉi),
where Ξ(ĉi) = {Φ(xj) ∈ V : xj ∈ Ξ̂(ĉi)}.

Proof. The basic idea in the proof is that for any two centers

ci, cj ∈ C, i �= j, we want to determine an area Ξ(ci, cj) ∈
V such that using either geodesic distance dg or q-distance



dq , all the vertices in Ξ(ci, cj) have smaller distance to ci
than to cj . Let Ξ(ci) = ∩cj∈C,i �=jΞ(ci, cj). Then all the

vertices in Ξ(ci) have smaller distance to ci than to all other

centers in C. If the cluster Vi ∈ Ξ(ci), then this cluster is

the same using either dg or dq . That completes the proof.

To find Ξ(ci, cj), we note that between any two vertices,

their q-distance cannot be smaller than their geodesic dis-

tance. Then for any vertex v ∈ Ξ(ci, cj), we look for a up-

per bound U(ci, v) of q-distance from ci to v, and a lower

bound L(cj , v) of geodesic distance1 from cj to v. Then

what we need to do is to ensure U(ci, v) ≤ L(cj , v).

To setup such an upper bound and a lower bound, we

map the center set C ∈ V back into the media X , denoted

as Ĉ = {ĉi}nc
i=1 ⊂ X , ĉi = Φ−1(ci), ∀i. We also denote

the inverse map of Ξ(ci, cj) from the graph G to the media

X as Ξ̂(ĉi, ĉj) = {x ∈ X : Φ(x) ∈ Ξ(ci, cj)}.

First, let’s consider the upper bound U(ci, v). For any

atom Φ−1(v), denote the scan conversion of the line (in the

media domain X) from ci to v as Lsc(ci, v) = {xj1 =
ĉi, xj2 , xj3 , · · · , xjn′ = Φ−1(v)}. It can readily be seen

that the indices2 in Lsc(ci, v) satisfy ja < jb, ∀ja, jb,

1 ≤ a < b ≤ n′. Then the mapped path Φ(Lsc(ci, v)) =
{Φ(pj1) = ci,Φ(pj2),Φ(pj3), · · · ,Φ(pjn′ ) = v} is in

the search space of Algorithm 2 and therefore the q-

distance from ci to v is not larger than the length of

Φ(Lsc(ci, v)). To characterize the local geometry around

Ξ(ci, cj), we map the cluster Vi|dg back into the media

X , i.e., Φ−1(Vi|dg
) = {xj : Φ(xj) ∈ Vi|dg

}, and con-

sider the convex hull of Φ−1(Vi|dg
), which we denote as

CH(Φ−1(Vi|dg )). For any v ∈ Vi, we have Lsc(ci, v) ⊂
CH(Φ−1(Vi|dg

). We define the maximal edge length in

Vi|dg as lmax(Vi|dg ) = maxe=(va,vb)∈E{le = ‖vi −
vj‖2, va, vb ∈ Φ(CH(Φ−1(Vi|dg )))}. Then we have the

length of Φ(Lsc(ci, v)) is bounded by lmax(Vi|dg
)‖x, ĉi‖M ,

where the pixel x = Φ−1(v), ‖ ‖M is the Manhattan dis-

tance in the media. We set lmax(Vi|dg
)‖x, ĉi‖M to be the

upper bound U(ci, v).

Now, let’s consider the lower bound L(cj , v). In the

clustering {Vi|dg
}Ki=1, denote the set of neighboring clus-

ters of each Vi|dg
as Nb(Vi)|dg

. We consider the work-

ing area Ξ̂(ĉi, ĉj) in which the corresponding clusters Vi|dg

and Vj |dg
are neighbors. We define the minimal edge

length in Vj |dg as lmin(Vj |dg ) = mine=(va,vb)∈E{le =
‖vi − vj‖2, va, vb ∈ Vj ∪ Nb(Vj)|dg}. For any atom

x = Φ−1(v) ∈ Ξ̂(ĉi, ĉj), the geodesic distance from cj
to v in the graph G is not smaller than lmin(Vj |dg

)‖x, ĉj‖M ,

which we set to be the lower bound L(cj , v).

Finally to ensure U(ci, v) ≤ L(cj , v), we define the

1In graph G, the geodesic distance equals to the shortest path distance.
2We assume there is only one center ci in the set C. The case of mul-

tiple centers can be handled in a similar way.

1-ring 2-ring 4-ring
Figure S1. i-ring (black disks) of a center (red disks), i = 1, 2, 4,

in the graph G representing an image.

i-ring

Figure S2. Proof of Property 4 in the image case. Assume that the

vertex v (the red dot) lies on the i-ring (the red line). The grey area

contains all j-rings, j ≤ i. There are two possible locations of v
on the i-ring: on the corner or on the edge.

working area Ξ̂(ĉi, ĉj) with the following condition:

lmax(Vi|dg )‖x, ĉi‖M ≤ lmin(Vj |dg )‖x, ĉj‖M (S1)

i.e., for each atom x ∈ Ξ̂(ĉi, ĉj), it satisfies
lmax(Vi|dg )
lmin(Vj |dg ) ‖x, ĉi‖M ≤ ‖x, ĉj‖M . That completes the

proof.

Property 2. For any c ∈ C, v ∈ V \ C and a shortest
path cv = {vIj1 = c, vIj2 , · · · , vIjn′ = v} between c and
v on G, the q-path c̃v output from Algorithm 2 is exactly the
shortest path cv, if and only if ∀a, b, 1 ≤ a < b ≤ n′, the
indices Ija < Ijb .

Proof. If a shortest path cv = {vIj1 = c, vIj2 , · · · , vIjn′ =

v} between c and v on G satisfies that ∀a, b, 1 ≤ a < b ≤
n′, the indices Ija < Ijb , then this path is in the search

space of Algorithm 2. Since Algorithm 2 uses the prede-

fined traversal order to find a shortest path in the search

space, the q-path output from Algorithm 2 can exactly find

the shortest path cv. On the other hand, if the indices of

the vertices in the shortest path cv are not embedded in the

predefined traversal order, it is not in the search space and

therefore cannot be output from Algorithm 2.

Definition 1. For each vertex vi ∈ V , we define an
allowable region Ω(vi) of vi, which is a set of vertices
satisfying Ω(vi) = {vj ∈ V : j < i}.

The allowable region can be visualized using the follow-

ing i-ring concept.



RW (297) EAMS (257) SEAW (327) WP (328) QS (1012) NC (313)

FH (366) TPS (324) POISE (305) PF (572) ERGC (306) CIS (12,144)

TP (313) SEEDS (260) ETPS (294) CCS (303) CRS (312) CW (328)

ERS (300) LSC (893) MSS (321) PB (355) preSLIC (243) W (298)

VC (10,854) SLIC (259) MSLIC (261) IMSLIC (300) Ours (300)

Figure S3. Visual comparison of 29 superpixel methods (another two methods are only suitable for RGBD depth images and do not show

here). The number of superpixels specified by the user is 300 and the actual numbers of output superpixels are in parentheses. The figure

is of high resolution and can zoom-in for details.

Definition 2. In the graph G, the 0-ring of a center c is the
center itself, which is also a vertex in G. The i-ring of c are
those vertices sharing an edge with a vertex in (i− 1)-ring
and do not appear in any other j-ring, 0 ≤ j < i, ∀i.

Figure S1 shows three examples of i-rings in an image.

For any vi ∈ V , assume it is on the j-ring of a center

c. It can readily be seen that allowable region Ω(vi) of vi
includes all the k-rings of c, 0 ≤ k < j, and a portion of

j-ring. On the other hand, all the k-rings of c, k > j, are

not contained in Ω(vi).

Property 3. For any c ∈ C, v ∈ V \ C and a shortest
path cv = {vIj1 = c, vIj2 , · · · , vIjn′ = v} between c and
v on G, the q-path c̃v output from Algorithm 2 is exactly the
shortest path cv, if and only if ∀i, 1 ≤ i ≤ n′, the subpath
cvIji of cv is contained in the allowable region of vIji .

Proof. If ∀i, 1 ≤ i ≤ n′, the subpath cvIji of cv is con-

tained in the allowable region of vIji , then by Definition of

allowable regions, ∀1 ≤ a < i, we have Ija < Iji for all the

vertices on the shortest path cv. Accordingly, by Property

2, Property 3 is held.

Property 4. Assume v ∈ V is in a general position, i.e.,
it has nζ neighbors in V . Then in these neighbors, half of
them have indices larger than v.

Proof. Referring to Figure S2, we prove this property in the

image case (i.e., ζ = 2 and nζ = 8). The video case (i.e.,

ζ = 3 and nζ = 26) can be proved in a similar way. For any

vertex v ∈ V in a general position, assume that it lies on the

i-ring of a center c. Then there are two possible locations of

v on the i-ring: on the corner or on the edge.

Case 1: on the corner. In this case, five of eight neighbor

vertices of v are outside of the i-ring and then they have

indices larger than v.

Case 2: on the edge. In this case, three of eight neighbor

vertices of v are outside of the i-ring and then have indices

larger than v. In addition, there are two neighbor vertices of

v on the edge of i-ring. In the Section 4 of the main paper,

we set the rule that the neighboring vertices are visited in
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(a) Under-segmentation error
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(b) Boundary recall
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(c) Achievable segmentation accuracy
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(d) Compactness

Figure S4. Evaluation of 26 superpixel methods on the BSDS500 dataset, using the extended metric versions proposed in [50] that are

independent of the number of superpixels (i.e., the area under the curve for K ∈ [200, 700]).

the order Γ = (N, W, S, E, NW, SW, SE, NE). Given this

order, at least one of these two neighbor vertices on the edge

of i-ring has the index larger than v. That completes the

proof.

S3. Comparison of 31 Superpixel Methods
We compared 31 superpixel methods (28 collected in

[50], MSLIC [30], IMSLIC [31] and our qd-CSS) on five

datasets: BSDS500 [2] and SBD [18] are outdoor RGB im-

age datasets, NYUV2 [46] and SUNRBGD [47] are indoor

RGBD depth image datasets, and Fashionista [58] is a cloth-

ing image dataset.

Following [50], these 31 superpixel methods can be clas-

sified into seven classes:

• Watershed-based: watershed method (W) [35], com-

pact watershed (CW) [37], morphological superpixel

segmentation (MSS) [3], water pixels (WP) [32];

• Density-based: edge-augmented mean shift (EAMS)

[9], quick shift (QS) [53];

• Graph-based: normalized cuts (NC) [41], graph-based

image segmentation (FH) [13], random walks (RW)

[19], constant intensity superpixels (CIS) [54], entropy

rate superpixels (ERS) [29], Boolean optimization su-

perpixels (PB) [62], proposals for objects from im-

proved seeds and energies (POISE) [21];

• Contour evolution: turbo pixels (TP) [25], Eikonal re-

gion growing clustering (ERGC) [6];

• Path-based: path finder (PF) [12], topology preserving

superpixels (TPS) [16];

• Clustering-based: simple linear iterative clustering

(SLIC) [1], depth adaptive superpixels (DASP) [56],

VCells (VC) [23], voxel-cloud connectivity segmen-

tation (VCCS) [38], preemptive SLIC (preSLIC) [37],

linear spectral clustering (LSC) [27], MLSIC [30], IM-

SLIC [31] and our qd-CSS;

• Energy optimization: contour relaxed superpixels

(CRS) [34], superpixels extracted via energy-driven

sampling (SEEDS) [11], convexity constrained super-

pixels (CCS) [52], extended topology preserving seg-

mentation (ETPS) [59];

• Wavelet-based: superpixels from edge-avoiding

wavelets (SEAW) [49].



D
AS

P
R

W
EA

M
S

SE
AW W

P
Q

S FH TP
S

PO
IS

E PF
ER

G
C TP

SE
ED

S
ET

PS
C

C
S

C
R

S
C

W
ER

S
M

SS PB
pr

eS
LI

C W
SL

IC
M

SL
IC

IM
SL

IC
O

ur
s0

0.05

0.1

0.15

0.2

0.25

U
nd

er
se

gm
en

ta
tio

n 
Er

ro
r

(a) Under-segmentation error
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(b) Boundary recall
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(c) Achievable segmentation accuracy
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(d) Compactness

Figure S5. Evaluation of 26 superpixel methods on the NYUV2 dataset, using the extended metric versions proposed in [50] that are

independent of the number of superpixels (i.e., the area under the curve for K ∈ [200, 700]).
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(a) Under-segmentation error
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(b) Boundary recall
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(c) Achievable segmentation accuracy
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(d) Compactness

Figure S6. Evaluation of 26 superpixel methods on the SUNRBGD dataset, using the extended metric versions proposed in [50] that are

independent of the number of superpixels (i.e., the area under the curve for K ∈ [200, 700]).
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(a) Under-segmentation error
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(b) Boundary recall
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(c) Achievable segmentation accuracy
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Figure S7. Evaluation of 25 superpixel methods on the SBD dataset, using the extended metric versions proposed in [50] that are indepen-

dent of the number of superpixels (i.e., the area under the curve for K ∈ [200, 700]).
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(a) Under-segmentation error

R
W

EA
M

S
SE

AW W
P

Q
S FH TP
S

PO
IS

E PF
ER

G
C TP

SE
ED

S
ET

PS
C

C
S

C
R

S
C

W
ER

S
M

SS PB
pr

eS
LI

C W
SL

IC
M

SL
IC

IM
SL

IC
O

ur
s0

0.2

0.4

0.6

0.8

1

Bo
un

da
ry

 R
ec

al
l

(b) Boundary recall
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(c) Achievable segmentation accuracy
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(d) Compactness

Figure S8. Evaluation of 25 superpixel methods on the Fashionista dataset, using the extended metric versions proposed in [50] that are

independent of the number of superpixels (i.e., the area under the curve for K ∈ [200, 700]).
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(a) Example video clip 1: supervoxels clipped on frames #1, #41 and #81
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(b) Example video clip 2: supervoxels clipped on frames #1, #41 and #81

Figure S9. Visual comparison of superpixels (induced by clipping supervoxels on each image frame) obtained by GB [13], GBH [20], SWA

[43, 44, 10], MeanShift [39], TSP [7], Yi-CSS [60] and our method qd-CSS. All the methods generate approximately 1,000 supervoxels.

TSP, Yi-CSS and qd-CSS produce regular supervoxels (and accordingly regular clipped superpixels), while other methods produce highly

irregular supervoxels. Compared to TSP, Yi-CSS and qd-CSS generates more supervoxels in content-rich areas and fewer supervoxels

in content-sparse areas. In terms of UE3D, BRD, SA3D and CO on four video datasets (Figure S10), qd-CSS is better than Yi-CSS on

average.

Among the above 31 methods, only ERS [28], IMSLIC and

qd-CSS can output the exact number of superpixels as de-

sired by users. Furthermore, only W, MSLIC, IMSLIC and

qd-CSS have one parameter. All other methods have 2-6 pa-

rameters. We use the parameters optimized in [50] to evalu-

ate these methods. Figure S3 shows a qualitative result of 29

superpixel methods on a RGB image (another two methods

VCCS and DASP can only work for RGBD depth images).

In the introduction section of the main paper, connectiv-

ity is listed as one of five key criteria for evaluating super-

pixel algorithms. Stutz et al. [50] also suggest to strictly

enforce connectivity by relabelling disjoint components in

a superpixel as separated superpixels. Liu et al. [31] show

that VC frequently outputs a much larger number of super-

pixels than the number desired by the user (Table 3 in [31]).

Our experiment shows that LSC, CIS and VCCS have simi-

lar behavior: e.g., on BSDS500 dataset, when users input

a desired number 300, the minimum, maximum and av-

erage numbers of superpixels produced by LSC, VC and

CIS are (275, 1884, 542.002), (41, 35535, 3102.614) and

(220, 13275, 3311.968), respectively. See also Figure S3

for an example. VCCS can only work on RGBD depth im-

ages and allow users to input the number of supervoxels3.

However, the number of supervoxels does not relate to the

output number of superpixels. So we exclude these four

methods for further comparison.

In the main paper, the metrics of under segmentation er-

ror (UE) [1, 25] and boundary recall (BR) [33] are used to

measure the over-segmentation accuracy, and here we add

one more metric, achievable segmentation accuracy (ASA)

[28, 55]: (1) a lower UE value means that superpixels are

better overlapped with a ground-truth segmentation, (2) a

higher BR value means that fewer true ground-truth edges

are missed, and (3) a higher ASA value means a better

achievable accuracy when superpixels are used for subse-

quent segmentation. For a concise comparison, we use

the extended version of these metrics proposed in [50] that

are independent of the number of superpixels. Since NC

is much slower than the other methods, we only evaluate

it on BSDS500. Aslo noting that DASP only works on

RBGD depth images, we evaluate 26 methods on NYUV2

and SUNRBGD depth image datasets, evaluate 26 methods

on BSDS500 and evaluate 25 methods on SBD and Fash-

3This type of supervoxels is defined on 3D point cloud.
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(iv) Compactness

(a) BuffaloXiph dataset: qd-CSS has the smallest UE3D and BRD, the highest CO and the second highest SA3D.
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(ii) 3D segmentation accuracy
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(iv) Compactness

(b) SegTrack v2 dataset: qd-CSS has the smallest UE3D, the second smallest BRD, the second highest CO and SA3D.
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(iv) Compactness

(c) BVDS dataset: qd-CSS has the smallest UE3D and BRD, the highest CO and SA3D.
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(d) CamVid dataset: qd-CSS has the smallest UE3D and BRD, the highest CO and SA3D.

Figure S10. Evaluation of 8 supervoxel methods on the BuffaloXiph, SegTrack v2, BVDS and CamVid datasets. Our method qd-CSS have

the best overall performance on the measures UE3D, BRD, SA3D and CO.

ionista datasets.

The quantitative results are summarized in Figures S4,

S5, S6, S7 and S8. In terms of UE metric, qd-CSS is ranked

No.1, 1, 2, 1, 1 in five datasets. In terms of BR metric,

qd-CSS is ranked No.8, 8, 8, 10, 6 in five datasets. In

terms of ASA metric, qd-CS is ranked No.1, 1, 2, 1, 1 in

five datasets. The average rank of qd-CSS over 15 mea-

sures (i.e., three metrics vs. five datasets) is 3.47. There

are only five methods whose all 15 measures are ranked

within Top 10. We sort these five methods using their



(a) ETPS (0.8161) (b) qd-CSS (0.9264)

(c) ETPS (0.6019) (d) qd-CSS (0.9113)

Figure S11. Contour closure results on two examples in the WHD

dataset using 100 superpixels generated by qd-CSS and ETPS. The

optimal closure contours are shown in red, and the boundaries of

superpixels are shown in green. The F measure value for each

closure contour is shown below each image; the range of the F-

measure values is [0, 1], and larger values indicate better results.

average ranks: qd-CSS(3.47), POISE(3.73), ERS(3.87),

ERGC(4.20), ETPS(6.07). Overall, qd-CSS is ranked No.

1.

Compactness [42] is another important metric which

measures shape regularity for superpixels. It was observed

[31, 42] that compact superpixels usually have regular

neighboring relations and then better segment foregrounds

in images. In all 25 superpixel methods evaluated on five

datasets, the average ranking of compactness for the top

five methods are qd-CSS (8.6), POISE (21.2), ERS (22.8),

ERGC (20.2), ETPS (11.2), showing that only qd-CSS and

ETPS have good compactness. Then We further compare

qd-CSS and ETPS in the application of optimal image con-

tour (Section S5).

S4. Comparison of 8 Supervoxel Methods

By setting ζ = 3 for the manifold Mζ , qd-CSS can

also generate supervoxels in video. We compared qd-CSS

with Yi-CSS [60] and six representative supervoxel meth-

ods collected in [57], which are NCut [45, 15, 14], SWA

[43, 44, 10], MeanShift [39], GB [13], GBH [20] and

TSP [7], and evaluated them on four video datasets, i.e.,

BuffaloXiph [8], SegTrack v2 [26], BVDS [51, 17] and

CamVid [5], all of which have ground truth labels drawn

by human annotators. Some qualitative results of these su-

pervoxel methods are shown in Figures S9.

We use three commonly used quality metrics pertaining
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Figure S12. F-measure values with respect to the number of out-

put solutions (from 1 to 10) in the framework developed by Levin-

shtein et al. [24] on the WHD dataset. The number of superpixels

is fixed to 100. The range of the F-measure values is [0, 1], and

larger values indicate better results.
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Figure S13. Average F measure in spatiotemporal closure appli-

cation. The results are averaged on Stein et al. [48] dataset. qd-

CSS and Yi-CSS achieves the best average F measure among eight

methods, and qd-CSS is slightly better than Yi-CSS.

to supervoxels for evaluating the over-segmentation accu-

racy: 3D under-segmentation error (UE3D) and 3D seg-

mentation accuracy (SA3D) [7, 25, 57] are complementary

to each other and cooperatively measure how tight super-

voxels overlapping with ground truth segmentation. Bound-

ary recall distance (BRD) [36, 57] measures to what extent

the ground truth boundaries are correctly retrieved by su-

pervoxel boundaries. Compactness (CO) [61] measure the

shape regularity of supervoxels. Better supervoxels’ quality

means lower values of UE3D and BRD, and higher values

of SA3D, and CO.

The quantitative results of the UE3D, BRD, SA3D and

CO metrics evaluated on four video datasets are summa-

rized in Figure S10. The results show that among 8 super-

voxel methods, our qd-CSS, Yi-CSS and TSP are top three

methods, and qd-CSS has the best overall performance.
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Figure S14. Spatiotemporal Closure results on four examples in Stein et al. dataset [48]. Results using six supervoxel methods are

presented. The optimal spatiotemporal closure contours are shown in red, and the boundaries of supervoxels are shown in green. One

representative frame is illustrated for each video. The F measure value for each spatiotemporal closure is shown below each frame; the

range of the F measure values is [0, 1], and larger values mean better results.

S5. Applications
In Section 6 of the main paper, superpixels and super-

voxels are directly evaluated on one image and two video

applications. Here we present the full details of the com-

parison.

Optimal image and video closure. To avoid the ex-

haustive searching in the entire image space of all pixels,

Levinshtein et al. [24] propose a novel framework that sep-

arates an object from background by finding subsets of su-

perpixels/supervoxels such that the contour of the union of

these atomic regions has strong boundary support in the im-

age/video. We use the source code provided by the au-

thors4 to compare different superpixels/supervoxel meth-

ods on an image dataset WHD [4] and a video dataset [48]

with ground-truth segmentations. For image contour clo-

sure evaluated on the WHD dataset, we compare two su-

perpixel methods – qd-CSS and ETPS as selected in Sec-

tion S3 — and illustrate some qualitative results in Figure

S11. The F-measure values averaged on the WHD dataset

are summarized in Figure S12, showing that qd-CSS has

better performance than ETPS. For optimal video closure

by supervoxel grouping, the dataset of Stein et al. [48] in

which each sequence has a ground truth segmentation mask,

is used to perform a quantitative assessment. Seven repre-

4http://www.cs.toronto.edu/∼babalex/spatiotemporal closure code.tgz
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Figure S15. The average F measures of different supervoxel re-

sults on Youtube-Objects Dataset. The results are plotted per ob-

ject class and each object class contains several video sequences.

Larger F measure values mean better foreground propagation re-

sults. The results show that qd-CSS is ranked 1, 4, 1, 3, 1, 4, 3,

2, 4, 1 in ten object classes and achieves the best average perfor-

mance.

sentative methods (GB, GBH, NCut, MeanShift, SWA, TSP,

Yi-CSS) and our CSS method are compared. The average

F measures across all sequences are summarized in Figure

S13. Some qualitative results are illustrated in Figure S14.
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Figure S16. Foreground propagation results of six supvoxel methods on two examples in Youtube-objects dataset [40]. For each example

video, three representative frames are selected. The foreground masks are shown in green. The incorrectly labeled areas are circled in red.

The average F measure for each example video is shown below three frames. the value of the F measure ranges in [0, 1], and larger values

mean better results.

These results show that qd-CSS achieves the best spatiotem-

poral closure performance.

Foreground propagation in videos. Given the first

frame with manual annotation for the foreground object, a

novel approach is proposed in [22] to propagate the fore-

ground region through time, by using supervoxels to guide

the estimates towards long-range coherent regions. We use

the source code provided by the authors5 to compare6 five

representative methods (GB, GBH, MeanShift, TSP and Yi-

CSS) and our qd-CSS. Youtube-Objects dataset [40] (126

videos with 10 object classes) with foreground ground-

truth, is used to perform a quantitative assessment. The av-

erage F measures of 10 classes are summarized in Figure

5www.cs.utexas.edu/∼suyog/code release public.tar
6NCut is not compared due to its high computational cost. SWA is

not compared since there are many long videos in this dataset and SWA

requires huge memory.

S15. In particular, the quantitative results using F-measure

reveals that qd-CSS achieves the best performance in four

object classes, i.e., aeroplane, boat, motorbike, train. Some

qualitative results are illustrated in Figure S16 and more re-

sults are presented in accompanying demo video. These

results show that qd-CSS achieves the best performance av-

eragely in ten classes.
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