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1. Experimental Results 
 In our main paper, we provided experimental results for a 
number of vision-related inverse problems. 9is supplement 
provides additional details on the formulations used, as well 
as more extensive visual results for the experiments. 

1.1. Disparity Super-resolution 
 For our disparity super-resolution experiment, we use the 
dataset from [1], which is a subset of the Middlebury stereo 
dataset. We show visualizations of our 16× super-resolution 
disparity maps in Figure 4. 

1.2. Optical Flow Estimation 
 In our experiments, we use the color-gradient constancy 
model [2] instead of the brightness-constancy one [3]. In all 
cases, one can express the optical flow data fidelity term as 

 𝑑(𝐮) = ‖𝐇(𝐮 − 𝐮0) + 𝐳)‖2
2 (S1) 

see (27) in our main paper. 9e color-constancy model gives 
us 
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in which 𝐙/,1
0,2,3 denotes the 𝑥- and the 𝑦-derivatives of the 

target image in the 𝑅, 𝐺 and 𝐵 components, and 𝐳)
0,2,3 are 

the difference of the reference image from the target one, in 
the 𝑅, 𝐺 and 𝐵 image components. 
 9e gradient-constancy model on the other hand gives us 
the derivative data 
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in which 𝐙//, 𝐙/1 and 𝐙11 are the second-order derivatives 
of the target image, and 𝐳/) and 𝐳1) are the difference of the 
first-order differences of the reference image from the target 
ones. When the gradient constancy model is applied on each 
of the color channels, we obtain 
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in which we define the sub-matrices of 𝐇 and 𝐳) similarly to 
before.  
 Revaud et al. [4] use a weighted combination of two data 
terms 𝑑(𝐮) based on (S2) and (S4). 9is combination can be 
understood as forming new 𝐇 and 𝐳) by stacking the ones in 
(S2) and (S4). When the two data terms are combined using 
equal weights, the inverse covariance matrix 𝐇∗𝐇 becomes  

 𝐙 = [
∑𝐙∗/𝐙∗/ ∑𝐙∗/𝐙∗1

∑𝐙∗/𝐙∗1 ∑𝐙∗1𝐙∗1
] ,  (S5) 

and the transformed signal is 

  𝐇†𝐳 = [
∑𝐙∗/𝐳∗)
∑𝐙∗1𝐳∗)

] ,  (S6) 

cf. (27) in our main paper. In (S5)–(S6), the summations are 
over the three color channels for each of the 0th, and the 1st 
partial derivatives of the image. Figure 1 visualizes our flow 
estimates. 

1.3. Image Deblurring 
 Figure 2 provides crops of the deblurred images from the 
the Kodak dataset [2], produced by different algorithms. We 
optimize the algorithm parameters for the different methods 
(Wiener, 𝐿2, and TV) via grid search. 9e Wiener filter uses 
a uniform image power spectrum model. Note the use of the 
bilateral filter is not optimal for de-noising as pointed out by 
Buades et al. [5], who demonstrate the advantages of patch-
based filtering (nonlocal means denoising) over pixel-based 
filtering (bilateral filter). Our deblurring results are based on 
the bilateral filter, but one is free to use the non-local means 
filter (or any other filter) for the de-noising operator 𝐀.
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Figure 1: Optical flow (top rows) and the corresponding flow error (bottom rows) produced using the geodesic and the bilateral variants of 
our method. Whiter pixels correspond to smaller flow vectors.   
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Figure 2: Crops of images from the Kodak dataset when the B-spline blur kernel (𝑛 = 8) is used. Our method exhibits less ringing compared 
to the Wiener filter and the 𝐿2-regularization methods, and has less staircasing artifacts than the 𝐿1 (TV) method.   
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Figure 4: 9e 16× super-resolution disparity maps produced using the geodesic and the bilateral variants of our method for the 1088 × 1376 
scenes Art, Books, and Möbius used in [1]. Best viewed online by zooming in.  

2. Possible Limitations 
 In Section 4 of our paper, we discussed that (14a) is valid 
only when (14a) matrix (𝐂 + 𝜆𝐋)−1 has a low-pass spectral  
response. We show this in Figure 4 (left) for the case where 
𝜆 = 1 and 𝐂 = 𝐈. Since 𝐂 + 𝜆𝐋 is Sinkhorn-normalized, it 
has a high-pass spectral response 𝐼 + 𝜆�̂�, ranging from 1 to 
2. As a consequence, the inverse filter response (𝐼 + 𝜆𝐿)−1̂  
ranges from 1 down to 0.5. We can approximate such a filter 
response as a sum of low-pass and all-pass responses. In our 

context, an approximation of 𝐮opt = (𝐂 + 𝜆𝐋)−1𝐂𝐳 can be 
obtained using a convex combination of 𝐂𝐳 and a low-pass-
filtered version 𝐀𝐂𝐳 of it. On the other hand, if 𝐼 + 𝜆�̂� is a 
low-pass response. In this case, the inverse response (shown 
in Figure 4, right) is high-pass, and the solution 𝐮opt cannot 
be approximated as a convex combination of 𝐂𝐳 and a low-
pass-filtered version of it. In practice, we can still use (14b) 
to solve the transformed problem.   
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Figure 3. 9e frequency response (𝐶 + 𝜆𝐿)−1̂  can be expressed as 
a sum of low-pass response 𝐴 ̂and an all-pass one 𝐼  ̂only when the  
response (𝐶 + 𝜆𝐿)−1̂  is low-pass-like (left). Shown for 𝜆 = 1. 
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