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In this supplementary material, we first provide details of
our free-form mask generation algorithm in Section 1 and
sketch generation algorithm in Section 2. We then study
the effects of sketch input in Section 3 with an example
where the input image uses the same mask but different
sketches. Next we provide visualization and interpretation
of learned gating values in Section 4. We show additional
ablation study of our proposed SN-PatchGAN in Section 5.
We show more comparison results of Global&Local [1],
ContextAttention [4], PartialConv [2] (both our implemen-
tation within same framework and official model via on-
line demo1) and our GatedConv in Section 6. We fi-
nally show more inpainting results of our system with sup-
port of free-form masks and user guidance on both natural
scenes and faces in Section 7. Moreover, a recorded real-
time video demo is available at: https://youtu.be/
uZkEi9Y2dj4.

1. Free-Form Mask Generation

Figure 1: Sampled free-form masks with previous work [2]
(1st row) and our automatic algorithm (2nd row).

The algorithm to automatically generate free-form
masks is important and non-trivial. The sampled masks,
in essence, should be (1) similar in shape to holes drawn in
real use-cases, (2) diverse to avoid over-fitting, (3) efficient
in computation and storage, (4) controllable and flexible.
Previous method [2] collects a fixed set of irregular masks
from an occlusion estimation method between two consec-
utive frames of videos. Although random dilation, rotation

1https://www.nvidia.com/research/inpainting/

and cropping are added to increase its diversity, the method
does not meet other requirements listed above.

We introduce a simple algorithm to automatically gener-
ate random free-form masks on-the-fly during training. For
the task of hole filling, users behave like using an eraser to
brush back and forth to mask out undesired regions. This
behavior can be simply simulated with a randomized algo-
rithm by drawing lines and rotating angles repeatedly. To
ensure smoothness of two lines, we also draw a circle in
joints between the two lines.

Algorithm 1 Algorithm for sampling free-form training
masks. maxVertex, maxLength, maxBrushWidth, maxAngle
are four hyper-parameters to control the mask generation.

mask = zeros(imageHeight, imageWidth)
numVertex = random.uniform(maxVertex)
startX = random.uniform(imageWidth)
startY = random.uniform(imageHeight)
brushWidth = random.uniform(maxBrushWidth)
for i = 0 to numVertex do

angle = random.uniform(maxAngle)
if (i % 2 == 0) then

angle = 2 * pi - angle // comment: reverse mode
end if
length = random.uniform(maxLength)
Draw line from point (startX, startY) with angle,

length and brushWidth as line width.
startX = startX + length * sin(angle)
startY = startY + length * cos(angle)
Draw a circle at point (startX, startY) with radius as

half of brushWidth. // comment: ensure smoothness of
strokes.
end for
mask = random.flipLeftRight(mask)
mask = random.flipTopBottom(mask)

We use maxVertex, maxLength, maxWidth and maxAn-
gle as four hyper-parameters to provide large varieties of
sampled masks. Moreover, our algorithm generates masks
on-the-fly with little computational overhead and no storage
is required. In practice, the computation of free-form masks
on CPU can be easily hid behind training networks on GPU
in modern deep learning frameworks. The overall mask

https://youtu.be/uZkEi9Y2dj4
https://youtu.be/uZkEi9Y2dj4


generation algorithm is illustrated in Algorithm 1. Addi-
tionally we can sample multiple strokes in single image to
mask multiple regions, and add regular masks (e.g. rectan-
gular) on top of sampled free-form masks. Example masks
compared with previous method [2] is shown in Figure 1.

2. Sketch Generation

Figure 2: For face dataset (on the left), we directly detect
landmarks of faces and connect related nearby landmarks
as training sketch, which is extremely robust and useful for
editing faces. We use HED [3] model with threshold 0.6 to
extract binary sketch for natural scenes (on the right).

We use sketch as an example user guidance to extend
our image inpainting network as a user guided system. We
show both cases on faces and natural scenes. For faces,
we extract landmarks and connect related landmarks. For
natural scene images, we directly extract edge maps using
the HED [3] edge detector and set all values above a certain
threshold (i.e. 0.6) to ones. Sketch examples are shown in
Figure 2. Alternative methods to generative better sketch
or other user guidance should also work well with our user-
guided image inpainting system.

3. The Effects of Sketch Input
As shown in Section 4.3, our inpainting network can

nicely follow the user sketch, which is useful for creative
editing of images. We show in Figure 3 an additional com-
parison case where the input image uses the same mask but
different sketches.

4. Visualization and Interpretation
In Figure 4, we provide the visualization and interpreta-

tion of learned gating values in our inpainting network, and
compare them with that of PartialConv [2].

5. Ablation Study of SN-PatchGAN
In this section, we present ablation study to demonstrate

the effectiveness of SN-PatchGAN. It is noteworthy that
SN-PatchGAN is proposed because free-form masks may
appear anywhere in images with any shape. Global and lo-
cal GANs [1] designed for a single rectangular mask are not
applicable. Previous work have already shown that (1) one
vanilla global discriminator has much worse performance

Figure 3: Image inpainting examples where the input image
uses same mask but different sketches.

than two local and global discriminators [1], and (2) GAN
with spectral normalization has better stability and perfor-
mance. We also provide experiments of SN-PatchGAN in
the context of image inpainting in Figure 5. Our image in-
painting network trained on a global GAN without spec-
tral normalization has significantly worse performance on
all examples.

6. More Comparison Results

In this section, we show more comparison results
of learning-based image inpainting systems including
Global&Local [1], ContextAttention [4], PartialConv [2]
(both our implementation within same framework and of-
ficial model via online demo) and our proposed method
based on gated convolution. Note that the models of scenes
and faces are trained in separate following all other meth-
ods [1, 2, 4]. All testing images are not in the training
set. Results are shown in Figure 6 and Figure 7. Com-
pared with our baseline PartialConv, our inpainting sys-
tem generates higher-quality inpainting results. Although
PartialConv significantly improves over previous baselines
like Global&Local [1] and ContextAttention [4], it still pro-
duces observable color inconsistency or shadows in both of-
ficial online demo and our reproduced version (best-viewed
with zoom-in on PDF to see color shadows and artifacts).
Moreover, PartialConv fails especially on cases (1) when
holes are large and involving transitions of two segments
(e.g., a mask covering both sky and ground), and (2) when
the image has strong structure/contour/edge prior. The rea-
sons are discussed in the introduction of main paper that un-
learnable rule-based hard-gating heuristically categorizes
all input locations to be either invalid or valid, ignoring
many other important information. Gated convolution is
able to leverage these information by learning a soft-gating
end-to-end.



Figure 4: Comparisons of gated convolution and partial convolution with visualization and interpretation of learned gating
values. We first show our inpainting network architecture based on [4] by replacing all convolutions with gated convolutions
in the 1st row. Note that for simplicity, the following refinement network in [4] is ignored in the figure. With same settings,
we train two models based on gated convolution and partial convolution separately. We then directly visualize intermedi-
ate un-normalized gating values in the 2nd row. The values differ mainly based on three parts: background, mask and
sketch. In the 3rd row, we provide an interpretation based on which part(s) have higher gating values. Interestingly we also
find that for some channels (e.g. channel-31 of the layer after dilated convolution), the learned gating values are based on
foreground/background semantic segmentation. For comparison, we also visualize the un-learnable fixed binary mask M of
partial convolution in the 4th row.

Figure 5: Ablation Study of SN-PatchGAN. From left to right, we show original image, masked input, results with one
global GAN and our results with SN-PatchGAN. SN-PatchGAN is proposed because free-form masks may appear anywhere
in images with any shape. Global and local GANs [1] designed for a single rectangular mask are not applicable.

7. More Inpainting Results of Our System

In this section, we present more examples towards real
use cases based on our proposed image inpainting system.
We show inpainting results on both natural scenes and faces
in Figure 8, Figure 9 and Figure 10. We show our inpainting
system helps user quickly remove distracting objects, mod-
ify image layouts, edit faces and interactively create novel
objects in images.
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Figure 6: More comparison results on natural scenes. Best-viewed with zoom-in on PDF to see color shadows and artifacts.



Figure 7: More comparison results on faces. Best-viewed with zoom-in on PDF to see color shadows and artifacts.

Figure 8: More results from our free-form inpainting system on natural images (1).



Figure 9: More results from our free-form inpainting system on natural images (2).



Figure 10: More results from our free-form inpainting system on faces.


