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1. Mobile App for Annotating Places

We developed a mobile app for users to efficiently an-
notate their camera regions. The app is shown in Figure 2.
Users can simply use points to define polygons and choose
a pre-defined category for each place. The annotation pro-
cess is efficient since usually the users will fix the cameras
for a long time, and they only need to spend a few seconds
to annotate the segmentation maps one time per camera.

2. Dataset Statistics

Detailed dataset statistics are shown in Table 1.

3. Network Architecture

The architecture of our network is shown in Table 2.

4. Decoupling Spatial-temporal Max Pooling

Traditional 3D ConvNets conduct max pooling along
both spatial and temporal dimensions of feature maps to in-
crease the size of receptive field. In home surveillance sce-
nario, it is reported in [6] that decoupling the max pooling
by first conducting spatial-only max pooling on some 3D-
conv blocks, then adding more conv blocks with temporal-
only max pooling leads to better performance. One possi-
ble reason is that conducting temporal-wise max pooling
early will capture motion patterns of only local body of
the moving objects. Since in a home surveillance video,
the moving objects are usually large, and we need to apply
several conv blocks with spatial-only max pooling layers
to capture the motion of the entire object. We tried both
methods and the per-category average precision results is
shown in Fig.2. "ST Max Pool" denotes that we use 5 conv
blocks with spatial-temporal max pooling to abstract both
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spatial and temporal information at the same time. "De-
couple ST Max Pool" denotes our network structure that
has 5 conv blocks with spatial-only max pooling, and fol-
lowed by 4 more blocks with temporal-only max pooling.
Since the second network has more conv blocks, to make
the two network structures have similar depth, we add one
more conv layer in each conv block of "ST Max Pool". For
both methods, we use our full model with PD+DD+Topo-
Agg. The hyper-parameters setting is: we decompose se-
mantics on different places after the second conv blocks
(L = 2); we conduct distance-based place discretization on
PLpr = {walkway, driveway,lawn} and choose k = 3;
for topological feature aggregation, we choose h = 1. We
can observe that "Decouple ST Max Pool" leads to better
performance.

5. Per-category Performance.

Fig. 7 in the main paper shows the average precision for
each action on unseen scenes. LIVR outperforms the base-
line methods by a large margin on almost all action cate-
gories. When comparing the orange and green bars in Fig.
7, we observe that the proposed topological feature aggrega-
tion (Topo-Agg) leads to consistently better generalization
for almost all actions. The blue dashed box highlights the
actions that include moving directions, and consistent im-
provements are brought by distance-based place discretiza-
tion (DD). For some actions, especially the ones occurring
on street and sidewalk, since they are relatively easy to rec-
ognize, adding DD or Topo-Agg upon the place-based fea-
ture descriptions (PD) does not help much. Overall, LIVR
improves the generalization capability of the network, espe-
cially for actions that are more challenging, and are associ-
ated with moving directions.
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Figure 1. Mobile app for users to annotate camera regions. Note that this version of App contains not only the six places in the main paper

but also some more fine-grained places.

Table 1. Dataset Statistics

Observed Scene

Unseen Scene Total

<vehicle, move along, street> 1397 957 2354
<person,move along,sidewalk> 539 299 838
<pet,move along,sidewalk> 149 169 318
<person,stay,lawn> 54 129 183
<person,move away (home),driveway> 218 173 391
<person,move toward (home),driveway> 222 201 423
<person,move toward (home),walkway> 153 91 244
<person,move away (home),walkway> 118 52 170
<vehicle,move away (home),driveway> 71 70 141
<vehicle,move toward (home),driveway> 52 66 118
<person,interact with vehicle,driveway> 171 81 252
<person,move across,lawn> 225 433 658
<person,stay,porch> 105 112 217
<person,move toward (home),porch> 310 139 449
<person,move away (home),porch> 260 136 396
Total 4044 3108 7152

Table 2. Network Structure of LIVR. We apply spatial-only max pooling after block Conv1-Conv5, and temporal-only max pooling after
block Conv6-Conv9. From Conv3 to Conv9, each conv blocks consists of two identical 3D-conv layers with ReLU in between. The
"on/off" status of each connection for the final gated FC layer is determined by Topo-Agg.

Block Input Size Kernel Size Stride # Filters Block Input Size Kernel Size Stride # Filters
Convl 15%x90x160x 3 3x3x%x3 Ix1x1 64 Convb 15x3x5%x64 3x3x%x3 Ix1x1 64
Pooll 15%x90x160x3 1x2x2 1x2x2 - Pool6 15x3x5x64 2x1x1 2x1x1 -
Conv2 15x45x80x 64 3x3%3 Ix1Ix1 64 Conv7 8X3x5x64 3x3x%x3 Ix1Ixl1 64
Pool2 15x45x 80x 64 1x2x2 1x2x2 - Pool7 8Xx3x5x64 2x1x1 2x1x1 -
Conv3 15%23x40x 64 3x3x3 Ix1Ix1 64 Conv8 4x3x5%x64 3x3x%x3 I1x1x1 64
Pool3 15%x23x40x64 1x2x2 1x2x2 - Pool8 4x3x5x64 2x1x1 2x1x1 -
Conv4 15%x12x20%x64 3x3x3 1x1x1 64 Conv9 2X3x5%x64 3x3x%x3 Ix1x1 64
Pool4 15X 12x20x 64 1x2x2 I1x2x2 - Pool9 2x3x5%x64 2x1x1 2x1x1 -
Convs 15x6x10x64 3x3%3 Ix1x1 64 SGMP 1Xx3x5x64 1x3%5 Ix1x1 -
Pool5 15x6x10x64 1x2x2 1x2x2 - Gated FC | Ix1x1x384 - - -

6. Automatically Generating Segmentation
Maps

In home surveillance scenario, we believe that it is rea-
sonable to involve users to provide us with perfect segmen-
tation maps of their own houses. However, to evaluate our

proposed method’s effectiveness with imperfect, automati-
cally generated maps, we developed an algorithm using au-
tomatic semantic segmentation and historical statistics of
the videos to generate place segmentation maps.

Due to the gap between appearance based segmenta-
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Figure 2. "ST Max Pool" denotes a network structure with 5 conv blocks with spatial-temporal max pooling. "Decouple ST Max Pool"
denotes our network structure that has 5 conv blocks with spatial-only max pooling, and followed by 4 more blocks with temporal-only
max pooling. We observe performance improvements on almost all action categories.
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Figure 3. Segmentation maps generated by Deeplab [3] V2 pre-trained on COCO-Stuff [2] dataset. Without enough training data, deep
learning based method cannot precisely differentiate places with different functionalities (e.g., walkway, driveway and street).

tion (for most of the current semantic segmentation meth-
ods) and the functionality based segmentation (for our home
surveillance scenario), directly applying the state of the art
segmentation methods fails in our scenario. We applied
Deeplab [3] V2 pre-trained on COCO-Stuff [2] dataset di-
rectly on our camera images and obtain poor results as
shown in Fig.3. From the figures we can see that the
appearance-based segmentation methods assigns same la-
bels to pixels with similar appearance but different func-
tionalities. Without a large enough training dataset contain-
ing different scene layouts with functionality labels, it is
difficult to apply deep learning based segmentation meth-
ods to generate the place segmentation maps. Thus instead,
we propose an approach using low-level cues and historical
statistics for automatic segmentation. We cluster pixels into
super-pixels based on their appearance and spatial relations.
Then, on these segments, we utilize normalized cut (NCut)
[5], which is an optimization based segmentation method,
to further segment the images to multiple segments based

on their appearance (Fig.4 (b)). Then, we apply a heuristic
method that utilizes videos of the scenes to obtain heatmaps
of some specific places (Fig.4 (c)), based on the fact that
the object types and motion patterns on different functional
places are different. For example, we can usually observe
people/vehicles with different scales and walking in differ-
ent ways at different functional places, from the view of a
surveillance camera. Based on the observations, we first
apply object detection algorithm [4] and tracking algorithm
[1] to detect and track moving person and vehicles in the
videos, and then generate the heatmaps of porch, walkway,
street, sidewalk and driveway in each scene based on the
above heuristics.

Given the results of NCut and the heatmaps, we la-
bel each segment with the majority place category of the
heatmap. We label segments as lawn if their averaged
color is close to one of the reference colors, e.g., green,
dark green, efc.The resulting annotation maps are shown
in Fig.4(d). When compared to the manually labeled



ground truth, our automatically generated maps are reason-
ably good, especially for place categories such as walkway,
porch, lawn and street. However, sometime our method
may mistakenly label sidewalk or driveway as street. The
NCut method cannot precisely separate sidewalk from street
since sidewalk is usually a very narrow region in the cam-
era view. Also, the appearance of sidewalk is very similar to
street. An interesting future direction of this work is to inte-
grate the estimation of the semantic maps into the network
architecture in an end-to-end trainable framework, which
would require collecting more scenes for training.
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Figure 4. (a) shows the camera images. (b) shows the results of NCut. Each super pixel is represented using its color mean. (c) shows the
heatmaps obtained from historical videos using our heuristic method. (d) shows the automatically generated maps. (e) shows the annotated
maps.



