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1. Discussion
In this section, we mainly discuss three topics with some

experimental results.
Nonuniform Universally Slimmable Networks. For all

trained US-Nets so far, the width ratio is uniformly applied
to all layers (e.g., MobileNet 0.25× means width in all lay-
ers are scaled by 0.25). Can we train a nonuniform US-Net
where each layer can independently adjust its own ratio us-
ing our proposed methods? This requirement is especially
important for related tasks like network slimming. Our an-
swer is YES and we show a simple demonstration on how
the nonuniform US-Net can help in network slimming.
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Figure 1. FLOPs-Accuracy spectrum of nonuniform US-
MobileNet v1 tested with different slimming strategies. Note that
each layer can adjust its own width ratio. The result suggests that
slimming the stage 5 of MobileNet v1 is not a good choice.

In this demonstration, we first train a nonuniform US-
MobileNet v1. The architecture of MobileNet v1 has 5 res-
olution stages with base channel number as 64, 128, 256,
512, 1024 in each stage. After training, we apply an ad-
ditional width ratio 0.6 to one of five stages and get five
models. Along with global width ratio, we can draw their
FLOPs-Accuracy spectrum in Figure 1. For simplicity we
only show performances of slimming stage 1, 4 and 5. Slim-

ming stage 2 and 3 have curves close to that of slimming
stage 1, while slimming stage 1 achieves the best results.
Figure 1 shows that the stage 5 of MobileNet v1 may re-
quire more channels because slimming stage 5 has worst
accuracy under same FLOPs. The result suggests slimming
the stage 5 of MobileNet v1 is not a good choice. It fur-
ther implicitly indicates that the stage 5 of MobileNet v1
network architecture needs a larger base channel number.

Width

0.25⇥ 55.7 51.0 0.1
0.3⇥ 57.3 33.2 0.1
0.4⇥ 61.0 34.5 0.1
0.5⇥ 64.2 62.4 0.4
0.6⇥ 66.9 60.7 6.5
0.75⇥ 69.5 67.7 14.2
0.8⇥ 69.9 67.3 51.0
1.0⇥ 71.8 69.8 71.2

Figure 2. FLOPs-Accuracy spectrum of US-MobileNet v1, 4-
switch S-MobileNet v1 and individual MobileNet v1 1.0× tested
on different widths after BN calibration. The results suggest that
deep neural networks are not naturally slimmable.

Naturally Slimmable? Perhaps the question is naive,
but are deep neural networks naturally slimmable? We
have proposed training methods and improved techniques
for universally slimmable networks, yet we have not pre-
sented any result if we directly evaluate a trained neural net-
work at arbitrary width either with naive training algorithm
or slimmable training algorithm in [1]. If we can calibrate
post-statistics of BN in these trained models (instead of us-
ing our proposed US-Nets training algorithm), do they have
good performances? The answer is NO, both naively trained
models and slimmable models [1] have very low accuracy
at arbitrary widths even if their BN statistics are calibrated.

In Figure 2, we show results of a US-MobileNet v1, 4-



switch S-MobileNet v1 [0.25, 0.5, 0.75, 1.0]× and individ-
ually trained MobileNet v1 1.0×. For individually trained
MobileNet v1 1.0×, it achieves good accuracy at width
1.0×, but fails on other widths especially when its compu-
tation is below 200 MFLOPs. For 4-switch S-MobileNet v1
[0.25, 0.5, 0.75, 1.0]×, it achieves good accuracy at widths
in [0.25, 0.5, 0.75, 1.0]×, but fails on other widths that are
not included in training. Our proposed US-MobileNet v1
achieves good accuracy at any width in the range from 40
MFLOPs to 570 MFLOPs consistently.

Averaging Output by Input Channel Numbers. In
slimmable networks [1], private scale and bias γ, β are
used as conditional parameters for each sub-network, which
brings slight performance gain. These parameters comes
for free because after training, they can be merged as y′ =
γ′y + β′, γ′ = γ√

σ2+ε
, β′ = β − γ′µ.

In US-Nets, by default we share scale and bias. Addi-
tionally we propose an option that mimics conditional pa-
rameters: averaging the output by the number of input chan-
nels. It also brings slight performance gain as shown in Ta-
ble 1. In this way, to some extent the feature aggregation
can be viewed as feature ensemble in each layer.

Table 1. Performance comparison (top-1 error) of our default
model (US-MobileNet v1) and model trained with output aver-
aging (US-MobileNet v1 +).

Name 0.25× 0.5× 0.75× 1.0× AVG

US-MobileNet v1 44.3 35.8 30.5 28.2 34.7
US-MobileNet v1 + 43.3 35.5 30.6 27.9 34.3 (0.4)

In practice, it is important not to average depthwise con-
volution, because the actual input to each output channel in
depthwise convolution is always single-channel. For net-
works with batch normalization, the proposed output av-
eraging also come for free since these constants can be
merged into BN statistics after training. At runtime when
switch to different widths, a switch cost (e.g., fusing new
BN to its previous convolution layer) will be applied. But
for networks without batch normalization, we should notice
that if we do not use output averaging, there is no switch
cost. Thus, the proposed output averaging is optional and is
not used by default.
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