
3375-supp.pdf


DPOD: 6D Pose Object Detector and
Refiner (Supplementary Material)


1. Implementation Details


The architecture of our detector is visualized in Figure 1.


The refinement network utilizes the same backbone archi-


tecture. It is a standard ResNet-like (ResNet18 in PyTorch)


model with a reduced number of layers and pooling oper-


ations in comparison to the original ResNet first presented


in [1]. Upsampling is implemented as bilinear interpola-


tion rather than deconvolution in order to decrease the num-


ber of parameters and the required amount of computations.


Each upsampling is followed by the concatenatination of


the output feature map with the feature map from the pre-


vious level, and one convolutional layer. When the detector


is trained on synthetic data, the first five layers are frozen in


order to prevent overfitting to peculiarities of the rendered


data. The architecture of the refinement network follows


the same architectural idea, except for the absence of up-


sampling and presence of fully-connected layers at the end.


Again, the first five layers are used in siamese-like fashion


for extracting features from image crops and renderings.


2. RANSAC Iterations


The number of RANSAC iterations crucially influences


the quality of predicted poses. We ended up using 150 it-


erations as it yielded the best trade off between quality and


runtime. The larger amount of iterations generally did not


improve the results significantly, but resulted in longer ex-


ecution times (see Table 1). Additionally, the ADD scores


after one iteration of the proposed refinement are provided.


They show that even 25 iterations of RANSAC are enough


to beat the state-of-the-art results if the refinement is used.


More iterations of RANSAC do not result in the consider-


able increase of pose quality.


Table 1: RANSAC iterations test: The effect of the num-


ber of RANSAC iterations on the overall ADD score.


RANSAC # 5 25 50 100 150 200 250 350 500


ADD w/o ref 59.15 76.95 80.15 82.12 82.98 83.44 83.79 84.33 84.66


ADD w/ ref 80.45 92.59 93.88 94.79 95.15 95.31 95.39 95.38 95.39


RANSAC ms 2 6 10 17 23 28 33 42 54


3. Runtime analysis


In Table 4 we provide the runtimes of the proposed ap-


proach for all models of the LineMOD dataset. The total


runtime consists of the time needed for PnP and approxi-


mately 13 ms for all the auxiliary tasks: the network’s for-


ward pass, post-processing of predicted segmentation, and


computation of 2D-3D correspondences. Table 3 provides


Img
240x320x3


7x7 conv, 62, /2


Pool, /2


3x3 conv, 64


3x3 conv, 64


3x3 conv, 64


3x3 conv, 128, /2


3x3 conv, 128


3x3 conv, 128


3x3 conv, 128


3x3 conv, 256, /2


3x3 conv, 256


3x3 conv, 256


3x3 conv, 256


Up, 2


stack


3x3 conv, 128


Up, 2


stack


3x3 conv, 64


Up, 2


stack


3x3 conv, 64


Up, 2


3x3 conv, 64


3x3 conv, classes


Up, 2


stack


3x3 conv, 128


Up, 2


stack


3x3 conv, 64


Up, 2


stack


3x3 conv, 64


Up, 2


3x3 conv, 64


3x3 conv, classes


Up, 2


stack


3x3 conv, 128


Up, 2


stack


3x3 conv, 64


Up, 2


stack


3x3 conv, 64


Up, 2


3x3 conv, 64


3x3 conv, classes


3x3 conv, 64


Figure 1: DPOD’s network architecture: Encoder-


decoder architecture based on ResNet.







Table 2: Comparison of deep learning-based refinement methods: Our refinement approach shows the overall best ADD


score with respect to the latest state-of-the art method DeepIM [3].


Method/Object Ape Bench. Cam Can Cat Dril. Duck Eggb. Gl. Hol. Iron Lamp Ph. Avg.


PoseCNN [7] + DeepIM [3] 77.0 97.5 93.5 96.5 82.1 95.0 77.7 97.1 99.4 52.8 98.3 97.5 87.7 88.6


Ours + DeepIM [3] 78.70 98.43 97.75 97.57 85.16 91.55 80.24 99.68 99.48 75.66 99.74 98.20 91.38 91.81


Ours + Our ref. 87.73 98.45 96.07 99.71 94.71 98.8 86.29 99.91 96.82 86.87 100 96.84 94.69 95.15


Table 3: Runtime comparison: Time-efficiency of our ap-


proach with respect to the other state-of-the-art approaches.


Method Frames per second Refinement


AAE [5] 4 200 ms/object


SSD6D [2] 10 24 ms/object


PVNet [4] 25 -


Ours 33 5 ms/object


YOLO6D [6] 50 -


comparison of the runtime of our detector with all the main


competitors mentioned in the paper. All the experiments


were conducted on an Intel Core i7-6900K CPU 3.20GHz


with NVIDIA TITAN X (Pascal) GPU.


4. Refinement


DeepIM [3] presents an iterative refinement routine that


takes an initial pose estimate from any external detector


and iteratively improves it. An additional per-model evalu-


ation is provided (see Table 2) to have a fair comparison of


DeepIM with our pose refinement. It compares the follow-


ing ADD scores: 1) ADD reported in the original DeepIM


paper [3], which used PoseCNN [7] to predict initial poses,


Table 4: Runtime analysis: Runtime of the proposed ap-


proach for all models of the LineMOD dataset.


Model PnP + RANSAC (ms) Total (ms) FPS


Ape 7 20 50


Benchvise 40 51 20


Cam 35 49 20


Can 30 44 23


Cat 20 33 30


Driller 26 40 25


Duck 4 16 63


Eggbox 9 23 43


Glue 5 17 59


Holepuncher 20 31 32


Iron 34 48 21


Lamp 40 54 19


Phone 31 45 22


Average 23 36 33


2) ADD if DeepIM is applied to poses predicted by our de-


tector, 3) ADD if poses predicted by the proposed detector


are refined with the proposed refinement. It is important to


mention that two iterations of DeepIM were made, as was


suggested in the paper. The proposed refinement was run


only for one iteration. The table clearly shows that better


initial pose hypotheses allow for better results after refine-


ment. It is also clear that our refinement clearly outperforms


DeepIM on most of the objects, while performing only in-


significantly worse on others.


5. Correspondence Quality


In this section, we demonstrate the quality of the output


correspondences. Namely, each classified correspondence


point is mapped to 3D and compared to the ground truth 3D


point. The ground truth 3D points are obtained in exactly


the same way as predicted points, i.e., by matching a UV


map rendered in the ground truth pose to model’s vertices.


The results per object are shown in Table 5. The table


reports the quality of correspondences separately for real


and synthetic data. For each model, mean absolute error,


median absolute error, and standard deviation of absolute


errors are reported in millimeters. Relatively large mean


error is explained by outliers, some of which can be quite


significant. Therefore, median is a better measure due to


its robustness to outliers. The table shows that the median


error is consistent across all the models. Additionally, it


demonstrates that the median error for the detector trained


G
ro


u
n


d
 T


ru
th


D
P


O
D


O
u


tp
u


t


A
b


so
lu


te
 E


rr
o


rs


Figure 2: Qualitative correspondence quality: Compari-


son of ground truth (left), predicted (center) UV maps and


heat maps (right) of absolute errors.







Table 5: Quantative correspondence quality: Correspon-


dence quality for real and synthetic data estimated in terms


of mean and median absolute errors, and standard deviation.


Real Data Synt Data


Model Mean Median Std Mean Median Std


Ape 10.05 4.58 14.60 11.46 5.74 15.26


Benc. 10.36 4.70 19.29 15.92 6.99 25.71


Cam 6.57 4.58 10.11 13.31 7.23 20.23


Can 8.19 4.03 13.46 11.97 5.10 18.72


Cat 8.60 4.77 12.22 9.87 5.42 13.99


Driller 8.52 4.78 17.78 18.14 6.80 36.06


Duck 5.93 3.98 8.72 7.63 4.99 10.41


Eggbox 6.00 4.26 10.23 42.39 9.40 48.07


Glue 7.82 4.26 13.73 17.12 8.11 23.19


Holep. 8.25 4.87 13.30 11.28 6.81 16.04


Iron 7.18 4.51 12.31 11.06 6.89 17.34


Lamp 11.64 4.31 24.80 18.60 8.58 30.85


Phone 6.09 2.84 12.94 9.52 4.38 18.31


on real data is noticeably lower than for the detector trained


on synthetic data. This explains the superior performance


of training on real data.


Figure 2 provides a visual comparison of predicted and


ground truth UV maps and heat maps, which demonstrate


where imprecisions take place. One can see that most im-


precisions are concentrated on the outer boundaries of the


object and, for objects with more complex geometry, on the


edges of their structural elements, i.e. in places where rapid


correspondence value changes occur.


6. Multiple Instance Detection


Our detector also works when multiple instances of the


same object are presented, because we parse through the re-


gions of the output mask when the network forward pass is


complete. The only limitation comes into play when several


objects of the same class overlap and form a single region.


In this case, only one pose will be estimated instead of two.


To overcome this, an additional contour regression head


can be added to the correspondence block (see Figure 3).


Once regressed, the output contours are simply multiplied


with the ID mask forming different regions, which, as a re-


Correspondence block OutputInput


ContoursRGB


Figure 3: Contour regression: Additional contour regres-


sion head for multiple instance detection.


U
V


 M
a


p
p


in
g


U
V


W
 M


a
p


p
in


g


Figure 4: UVW mapping: Visual comparison between UV


and UVW mappings.


sult, allows to distinguish between different regions of the


same class.


7. UVW Mapping


While being computationally efficient, the UV mapping


has a number of drawbacks. In the majority of cases, a sim-


ple spherical projection is sufficient to achieve a satisfactory


quality of the mapping. However, certain cases can require


a different treatment to minimize the stretching effect where


one color can cover several model vertices due to discretiza-


tion. This is especially a big problem for more complicated


geometries, which in some cases might require a selection


of another projection type or even a manual UV mapping


for reaching the best results.


A straightforward solution to this is the UVW mapping


based on normalized 3D coordinates of the model. Instead


of 2-channel UV maps, we then have 3-channel UVW maps


that are again discretized to the range [0, 255]. The only al-


gorithmic adjustment that has to be done is an additional


W-channel classification head. While decreasing the mem-


ory efficiency and increasing a computational complexity


of the network (due to a higher-dimensional solution space,


i.e., 2563 instead of 2562 in case of UV mapping), it has an


advantage of providing better quality correspondences (es-


pecially for objects with complex geometries) and of being


fully automatic (see Figure 4 for visual comparison).


Our additional experimental ablations have shown an


almost identical performance on the LineMOD and OC-


CLUSION datasets, but slightly higher execution times and


memory requirements. Nevertheless, despite the increased


complexity, we believe that this extension would prove it-


self useful in many real-world applications.


8. Additional Qualitative Results


In Figures 5 to 8, we show additional qualitative pose re-


sults on LineMOD and OCCLUSION datasets. Our method


demonstrates very high quality poses and is robust to occlu-


sions and illumination changes.







Figure 5: Example results on the LineMOD dataset: ape, can (left), benchvise, cat (middle), cam, driller (right). Green


bounding boxes correspond to ground truth poses, blue bounding boxes correspond to predicted poses.







Figure 6: Example results on the LineMOD dataset: duck, holepuncher (left), eggbox, iron (middle), glue, lamp, phone


(right). Green bounding boxes correspond to ground truth poses, blue bounding boxes correspond to predicted poses.







Figure 7: Example results on the OCCLUSION dataset. Green bounding boxes correspond to ground truth poses, bound-


ing boxes of other colors correspond to predicted poses.







Figure 8: Example results on the OCCLUSION dataset. Green bounding boxes correspond to ground truth poses, bound-


ing boxes of other colors correspond to predicted poses.







References


[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.


Deep residual learning for image recognition. In Proceedings


of the IEEE conference on computer vision and pattern recog-


nition, pages 770–778, 2016.


[2] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan


Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d detec-


tion and 6d pose estimation great again. In Proceedings of


the IEEE International Conference on Computer Vision, pages


1521–1529, 2017.


[3] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.


Deepim: Deep iterative matching for 6d pose estimation. In


Proceedings of the European Conference on Computer Vision


(ECCV), pages 683–698, 2018.


[4] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-


jun Bao. Pvnet: Pixel-wise voting network for 6dof pose esti-


mation. In Proceedings of the IEEE Conference on Computer


Vision and Pattern Recognition, pages 4561–4570, 2019.


[5] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian


Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3d


orientation learning for 6d object detection from rgb images.


In Proceedings of the European Conference on Computer Vi-


sion (ECCV), pages 699–715, 2018.


[6] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time


seamless single shot 6d object pose prediction. In Proceed-


ings of the IEEE Conference on Computer Vision and Pattern


Recognition, pages 292–301, 2018.


[7] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Di-


eter Fox. Posecnn: A convolutional neural network for 6d


object pose estimation in cluttered scenes. arXiv preprint


arXiv:1711.00199, 2017.







3375-video.mp4

