
DeceptionNet: Network-Driven Domain Randomization (Supplement)

Sergey Zakharov *,=, Wadim Kehl C, and Slobodan Ilic *,=

* Technical University of Munich C Toyota Research Institute = Siemens Corporate Technology
sergey.zakharov@tum.de, wadim.kehl@tri.global, slobodan.ilic@siemens.com

1. Network Architecture

Let CB
k be a convolutional block composed of the fol-

lowing layers: 3×3 convolution with k filters, BatchNorm
(BN), and ReLU activation function. Similarly, let UPB be
a decoding block made of: 2-factor upsampling transposed
convolution, BatchNorm (BN), and ReLU.

DeceptionNet D: Using the defined nomenclature, the
encoding part of the DeceptionNet can be described as:
CB

64−MP −CB
128−CB

128−MP −CB
128−CB

128; and its de-
coding part as: UP64−CB

64−CB
64−UP64−CB

64−CB
64−MB .

Where MB is defined by the specific module type, and MP
stands for a 2-factor max-pooling layer. Encoding blocks
have skip connections concatenating the channels with the
opposite decoding blocks. The visual representation of the
DeceptionNet’s architecture is depicted in Fig. 4.

Task Network T: In both cases, i.e., for MNIST classifi-
cation and Cropped LineMOD classification and pose esti-
mation, T follows a simple LeNet-like architecture. As for
MNIST (see Fig. 1), the final layer outputs the 10D vector,
whereas for Cropped LineMOD (see Fig. 3) there is a 11D
classification output as well as 4D quaternion output.

Figure 1: MNIST Classifier: Simple LeNet-like architec-
ture, where 2 convolutional layers followed by ReLUs and
max-poolings are finalized by 3 fully-connected layers.

Figure 2: Unguided samples: We provide a sample of un-
guided augmentations for MNIST and LineMOD.

2. Unguided Randomization: BG Filling

One of the modalities we have compared our results with
is unguided randomization that applies augmentations dur-
ing the data preprocessing step. While using the same mod-
ules and constraints as our deception network, its pertur-
bations are conditioned on random values instead of latent
codes from the input.

Since our DeceptionNet is capable of generating very
complex backgrounds, we have also used complex noise
types for unguided randomization to make the comparison
more fair (see Fig. 2). Apart from a uniform white noise,
two additional noise types were used: Perlin noise [2] and
cellular noise [3]. Sample frequencies were sampled from
the uniform distribution [0.0001, 0.1]. Both noise types
were generated using the open source FastNoise library [1].

Figure 3: Cropped LineMOD Task Network: Simple
LeNet-like architecture followed by a dropout layer with a
50% rate and outputting both a class and pose vector.



Figure 4: DeceptionNet architecture. Our network features a typical encoder-decoder architecture. The encoder part
consists of 2 consecutive downsamplings followed by a sequence of convolutional blocks CB . The decoder part shares a
similar architecture for all presented augmentation modules. Arrows show the skip connections between blocks.

3. Additional Qualitative Results

In this section, we present additional output examples
of the deception networks for Synthetic Cropped LineMOD
and SYNTHIA test cases.

The LineMOD deception network uses all of the decep-
tion modules presented in the paper, whereas the SYNTHIA
deception network uses three modules: light (L), elastic dis-
tortions (DS), and foreground noise (N). The sample out-
puts from each of the above-mentioned modules are shown
in Fig. 6. Moreover, Fig. 5 demonstrates the output of the
deception network during the training process. One can see
that the output becomes increasingly more sophisticated for
recognition by the task network.

Original Noise (N) Light (L) Distortion (D)

Figure 6: Deception modules’ transformations: Augmen-
tations applied for the SYNTHIA→ Cityscapes scenario.

Ape Bench. Camera Can Cat Driller Duck Holep. Iron Lamp Phone

It
er
at
io
n
s

Figure 5: Deceptive images xd over consecutive iterations: The output becomes increasingly more complex for T .



References
[1] Jordan Peck. Fastnoise library. https://github.com/

Auburns/FastNoise, 2016.
[2] Ken Perlin. Improving noise. In ACM Transactions on Graph-

ics (TOG), 2002.
[3] Steven Worley. A cellular texture basis function. In Proceed-

ings of the 23rd annual conference on Computer graphics and
interactive techniques, pages 291–294. ACM, 1996.

https://github.com/Auburns/FastNoise
https://github.com/Auburns/FastNoise

