
DMM-Net: Differentiable Mask-Matching Network
for Video Object Segmentation

Supplementary Material

Xiaohui Zeng1, 2∗ Renjie Liao1, 2, 3* Li Gu1 Yuwen Xiong1, 2, 3

Sanja Fidler1, 2, 4 Raquel Urtasun1, 2, 3, 5

University of Toronto1 Vector Institute2 Uber ATG Toronto3

NVIDIA4 Canadian Institute for Advanced Research5

{xiaohui, rjliao, yuwen, fidler}@cs.toronto.edu li.gu@mail.utoronto.ca urtasun@uber.com

1. Proof of Theorem 1
In this section, we prove our main result, i.e., Theorem 1,

based on the established convergence results of Dykstra’s
algorithm and the inexact projected gradient method for the
general constrained convex minimization [2].

1.1. Convergence of Dykstra’s Algorithm

First, we state the convergence result of Dykstra’s algo-
rithm from [1] without proof as Lemma 1 below.

Lemma 1. Suppose K is the intersection of a finite number
of closed half-spaces in a Hilbert space X . Starting with
any point x ∈ X , there exists some constants ρ > 0 and 0 ≤
c < 1, such that the sequence of iterates {xn} generated by
Dykstra’s algorithm satisfied the inequality,

‖xn − PK(x)‖ ≤ ρcn (9)

for all n, where PK(x) is the nearest point in K to x.

1.2. Convergence of Inexact Projected Gradient
Method

Now we turn to the inexact projected gradient method as
described in [2] which aims at solving the following general
constrained convex minimization,

minx∈Rn f(x) s.t. x ∈ C, (10)

where f : Rn → R is convex and C is a general closed con-
vex set. We only state the results which are relevant to our
case, i.e., f is differentiable and has Lipschitz continuous
gradient with constant Lf . In particular, we have,

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖ ∀x, y ∈ Rn (11)

The inexact projected gradient method is stated as below.
Note that each projection step is inexact as it only requires

∗Equal contribution.

Algorithm 2 : Inexact Projected Gradient Method for Gen-
eral Constrained Convex Minimization

1: Input: δ > 0, N, x0
2: For k = 1, 2, . . . , N − 1:
3: zk = xk−1 − 1

Lf
∇f(xk−1)

4: Compute xk such that ‖xk − PC(zk)‖ ≤ δ

5: Return 1
N

∑N−1
k=0 xk

δ-approximation. Therefore, our proposed Alg. 1 can be
regarded as a special instance of this general algorithmic
framework of projected gradient method. We state the con-
vergence result of this method from [2] without proof as
Lemma 2 below.

Lemma 2. Assuming the objective f is differentiable and
has Lipschitz continuous gradient with constant Lf . Let
{xk} be the sequence generated by the inexact projected
gradient method. Given inner accuracy δ > 0 and any
k ≥ 0, assuming ‖∇f(x∗)‖ ≤ Lfr0, then the follow-
ing sublinear estimates for feasibility and suboptimality in
x̂k = 1

k

∑k
i=0 xi hold:

‖x̂k − PC(x̂k)‖ ≤ δ,
f(x̂k)− f(x∗) ≥ −‖∇f(x∗)‖δ,

f(x̂k)− f(x∗) ≤
2Lfr

2
0

k
+ 5Lfr0δ + 5kLfδ

2, (12)

where r0 = ‖x0 − x∗‖.

Note that the sublinear convergence rate is obtained pro-
vided that δ = O(1k).

1.3. Our Result

Now we are ready to prove our main result. Recall
that our objective is f(X) = Tr(CX>). The gradient is

1

∇f(X) = C. Therefore, any Lf ≥ 0 is a Lipschitz con-
stant satisfying Eq. (11). Also, our constraint set C is a
closed convex set.

Theorem 1. Let r0 = ‖X0 − X∗‖F where X0 and X∗

are the initial and optimal assignment matrices respectively.
Let the learning rate 0 < α < min(15r0, r0/‖C‖F). There
exists some constants 0 ≤ c < 1 and ρ > 0 such that the
at any outerloop iteration i of Alg. 1, the error of projection
‖Xi − PC(Xi)‖F ≤ δ = ρcNproj where Xi and PC(Xi)
are the assignment matrix and its correct projection onto C
respectively. Moreover, for any 0 < ε < 1, there exists a

Nproj ≥ log1/c

(
ρ
√

15K
αε

)
such that,

δ ≤ αε

15r0

and after at most K iterations where

K =

⌈
6r20
αε

⌉
,

the output of Alg. 1 X̂ is ε-optimal, i.e., ‖X̂−PC(X̂)‖F ≤ ε
and |Tr

(
CX̂>

)
− Tr

(
CX∗>

)
| ≤ ε.

Proof. At outer step i of Alg. 1, we run Dykstra’s algorithm
for Nproj inner steps. We know from Lemma 1 that there
exists a ρi > 0 and 0 ≤ ci < 1 such that,

‖Xi − PC(Xi)‖ ≤ ρic
Nproj
i (13)

Denoting δi = ρic
Nproj
i , ρ, c = argmax(ρi,ci),i=1,...,Ngrad

δi,
and δ = ρcNproj , we have,

max
i=1,··· ,Ngrad

‖Xi − PC(Xi)‖F ≤ δ, (14)

where ρ > 0 and 0 ≤ c < 1.
Since δ is monotonically decreasing w.r.t.Nproj, there ex-

ists Nproj ≥ log1/c

(
ρ
√

15K
αε

)
, for any 0 < ε < 1, such

that,

δ ≤ αε

15r0
. (15)

Our objective function f(X) = Tr(CX>) is linear and
constraint set C is closed and convex. Therefore, our Alg. 1
is an instance of the inexact projected gradient method.
Moreover, since any Lf ≥ 0 is a Lipschitz constant sat-
isfying Eq. (11) in our case, we set Lf = 1

α where α is
is the learning rate and 0 < α < min(15r0,

r0
‖C‖F). Now

since all assumptions of Lemma 2 are satisfied, we apply it
to our algorithm and obtain that,

‖X̂ − PC(X̂)‖F ≤ δ,
f(X̂)− f(X∗) ≥ −‖C‖F δ,

f(X̂)− f(X∗) ≤ 2r20
Kα

+ 5
r0
α
δ + 5

Kδ2

α
, (16)

where theK-step output of our Alg. 1 is X̂ = 1
K

∑K−1
i=0 Xi

and we use the fact that∇f(X∗) = C.
If K ≥ 6r20

αε , then we have,

2r20
Kα
≤ ε

3
. (17)

Due to Eq. (15), we have,

5
r0
α
δ ≤ ε

3
. (18)

Since Nproj ≥ log1/c

(
ρ
√

15K
αε

)
, we have,

5
Kδ2

α
= 5

K

α
(ρcNproj)2

= 5
K

α

(√
αε

15K

)2

≤ ε

3
. (19)

Therefore, with Eq. (17), Eq. (18) and Eq. (19), we prove
that f(X̂)− f(X∗) ≤ ε.

For the lower bound, from Eq. (16) we have,

f(X̂)− f(X∗) ≥ −‖C‖F δ

≥ −‖C‖F
αε

15r0

≥ − ε

15
≥ −ε, (20)

We prove the ε-optimality w.r.t. the objective function.
Again, from Eq. (16), we have,

‖X̂ − PC(X̂)‖F ≤ δ

≤ αε

15r0
≤ ε. (21)

We prove the ε-optimality w.r.t. the feasibility.

Note that the constants (e.g., 6, 15) in Theorem 1 do not
matter that much as the inequality still holds by properly
changing the constants in Lemma 2 as discussed in [2].

2. Additional Experiments
We show the hyperparameters of our matching algorithm

on random cost matrices in Fig. 5. The random cost ma-
trices have 5 rows and 100 columns, where the values are
sampled from a uniform distribution over [0, 1). Three ran-
dom cost matrices are generated for the experiment. We
plot the objective function value of the outer loop and the

(a) 0% (b) 25% (c) 50% (d) 75% (e) 100%

Figure 4. Visualization of our results on YouTube-VOS, DAVIS 2017 and SegTrack v2 at different time steps (percentage w.r.t. the whole
video length). The three rows correspond to the YouTube-VOS, DAVIS 2017 and SegTrack v2 datasets respectively.

projection error of the inner loop under different sets of
hypperparameters including number of steps of outer loop
Ngrad, number of steps of inner loop Nproj and the learning
rate α. We choose the configuration which gives the best
trade-off between the computational cost and the conver-
gent rate: Ngrad = 400, Nproj = 50, and α = 0.01. From
the figure, one can see that the objective value decreases
as the number of outer loops increases and it reaches the
minimum at about Ngrad = 400 under different setting and
different cost matrices. The inner projection error drops in
a faster rate and in most of the case it is able to reach al-
most zero after about 50 rounds of projection. The figure
also shows that the learning rate plays an important role for
the optimization, i.e., learning rate 0.01 generally leads to a
faster convergence than learning rate 0.005. For the exper-
iments on video object segmentation dataset, we start with
Ngrad = 400, Nproj = 50 for both training and inference.
However, we reduce them to 40 and 5, respectively, for the
trade off of performance and speed.

We show additional visual examples of our method on
three datasets in Fig. 4.

3. Example Code
We show the example PyTorch code (less than 50 lines)

of our differentiable matching algorithm as below.

References
[1] F. Deutsch and H. Hundal. The rate of convergence of

dykstra’s cyclic projections algorithm: The polyhedral
case. Numerical Functional Analysis and Optimization,
15(5-6):537–565, 1994. 1

[2] A. Patrascu and I. Necoara. On the convergence of in-
exact projection primal first-order methods for convex
minimization. IEEE Transactions on Automatic Con-
trol, 63(10):3317–3329, 2018. 1, 2

Figure 5. Hyperparameters (number of steps of outer loop Ngrad, number of steps of inner loop Nproj, and learning rate α) tuning of our
differentiable matching layer. We test with three random cost matrices, each of which corresponds to two consecutive rows in the figure,
e.g., 1-st and 2-nd rows correspond to the 1-st cost matrix. Within the two consecutive rows, the first one shows how the objective function
varies with the number of steps in outer loop. The second one shows how projection error varies with the number of steps in inner loops.
For each setting of hyperparameters, we perform 10 different random initialization of the assignment matrix and plot the mean and variance
of the curves.

1 def project_row(X):
2 """
3 p(X) = X - 1/m (X 1m - 1n) 1mˆT
4 X shape: n x m
5 """
6 X_row_sum = X.sum(dim=1, keepdim=True) # shape n x 1
7 one_m = torch.ones(1, X.shape[1]).to(X.device) # shape 1 x m
8 return X - (X_row_sum - 1).mm(one_m) / X.shape[1]
9

10 def project_col(X):
11 """
12 p(X) = X if XˆT 1n <= 1m else X - 1/n 1n (1nˆT X - 1mˆT)
13 X shape: n x m
14 """
15 X_col_sum = X.sum(dim=0, keepdim=True) # shape 1 x m
16 one_n = torch.ones(X.shape[0], 1).to(X.device) # shape n x 1
17 mask = (X_col_sum <= 1).float()
18 P = X - (one_n).mm(X_col_sum - 1) / X.shape[0]
19 return X * mask + (1 - mask) * P
20

21 def relax_matching(C, X_init, max_iter, proj_iter, lr):
22 X = X_init
23 P = [torch.zeros_like(C) for _ in range(3)]
24 X_list = [X_init]
25

26 for i in range(max_iter):
27 X = X - lr * C # gradient step
28

29 # project C onto the constrain set
30 for j in range(proj_iter):
31 X = X + P[0]
32 Y = project_row(X)
33 P[0] = X - Y
34

35 X = Y + P[1]
36 Y = project_col(X)
37 P[1] = X - Y
38

39 X = Y + P[2]
40 Y = F.relu(X)
41 P[2] = X - Y
42

43 X = Y
44

45 X_list += [X]
46 return torch.stack(X_list, dim=0).mean(dim=0)

Listing 1. PyTorch example code

