
Supplementary Material
Graph Convolutional Networks for Temporal Action Localization

1. Proposal Features

Original Proposal
Feature
1024-d

Extended Proposal
Feature
3072-d

Segment-level
Features

Boundary
Extension

Original Proposal Extended Proposal

Max-pooling Max-pooling

Concatenate

Figure 1. The illustration of (extended) proposal feature extraction.

We have two types of proposal features and the process
of feature extraction is shown in Figure 1.
Proposal features. For the original proposal, we first obtain
a set of segment-level features within the proposal and then
apply max-pooling across segments to obtain one 1024-
dimensional feature vector.
Extended proposal features. The boundary of the original
proposal is extended with 1

2 of its length on both the left
and right sides, resulting in the extended proposal. Thus,
the extended proposal has three portions: start, center and
end. For each portion, we follow the same feature extrac-
tion process as the original proposal. Finally, the extended
proposal feature is obtained by concatenating the feature of
three portions.

2. Network Architectures
P-GCN. The network architecture of our P-GCN model is
shown in Figure 2. Let N and Nclass be the number of

Graph Conv, 512 

Original Proposal
Feature

Graph Conv, 1024 

FC, 𝑁௦௦ FC, 𝑁௦௦ FC, 𝑁௦௦ ൈ2

𝑁 ൈ 1024

𝑁 ൈ 2048

Concatenate

𝑁 ൈ 𝑁௦௦

ReLu

𝑁 ൈ 512

𝑁 ൈ 1024

Graph Conv, 512 

Extended Proposal
Feature

Graph Conv, 3072 

𝑁 ൈ 3072

𝑁 ൈ 6144

Concatenate

𝑁 ൈ 𝑁௦௦

ReLu

𝑁 ൈ 512

𝑁 ൈ 3072

𝑁 ൈ 𝑁௦௦ ൈ2

ReLu ReLu

Figure 2. The network architecture of P-GCN model.

proposals in one video and the total number of action cat-
egories, respectively. On the top of GCN, we have three
fully-connected (FC) layers for different purposes. The one
with Nclass × 2 outputs is for boundary regression and the
other two with Nclass outputs are designed for action clas-
sification and completeness classification, respectively.
MLP baseline. The network architecture of MLP baseline
is shown in Figure 3. We replace each of GCNs with a 2-
layer multilayer perceptron (MLP). We set the number of
parameters in MLP the same as GCN’s for a fair compari-
son. Note that MLP processes each proposal independently
without exploiting the relations between proposals.
Mean-Pooling baseline. As shown in Figure 4, the network
architecture of Mean-Pooling baseline is the same as the
MLP baseline’s except that we conduct mean-pooling on
the output of MLP over the adjacent proposals.

3. Training Details

We have three types of training samples chosen by two
criteria, i.e., the best tIoU and best overlap. For each pro-
posal, we calculate its tIoU with all the ground truth in that
video and choose the largest tIoU as the best tIoU (similarly
for best overlap). For simplicity, we denote the best tIoU

1



FC, 512 

Original Proposal
Feature

FC, 1024 

FC, ௦௦ FC, ௦௦ FC, ௦௦ 2

1× 1024

1× 2048

Concatenate

1× 𝑁௦௦

ReLu

1× 512

1× 1024

FC, 512 

Extended Proposal
Feature

FC, 3072 

1 × 3072

1× 6144

Concatenate

1× 𝑁௦௦

ReLu

1× 512

1× 3072

1× 𝑁௦௦ ×2

ReLu ReLu

Figure 3. The network architecture of the MLP baseline.

FC, 512 

Original Proposal
Feature

FC, 1024 

FC, ௦௦ FC, ௦௦ FC, ௦௦ 2

𝑁 × 1024

𝑁 × 2048

Concatenate

𝑁 ×𝑁௦௦

ReLu
𝑁 × 512

𝑁 × 1024

FC, 512 

Extended Proposal
Feature

FC, 3072 

𝑁 × 3072

𝑁 × 6144

Concatenate

𝑁 ×𝑁௦௦

ReLu
𝑁 × 512

𝑁 × 3072

𝑁 × 𝑁௦௦ ×2

ReLu ReLu

Mean-Pooling Mean-Pooling

𝑁 × 3072

Figure 4. The network architecture of the Mean-Pooling baseline.

and best overlap as tIoU and OL. Then, three types of train-
ing samples can be described as: (1) Foreground sample:
tIoU ≥ θ1; (2) Incomplete sample: OL ≥ θ2, tIoU ≤ θ3;
(3) Background sample: tIoU ≤ θ4. These certain thresh-
olds are slightly different on two datasets as shown in Table
1. We consider all foreground proposals as the complete
proposals.

Table 1. The thresholds on different datasets.
Dataset θ1 θ2 θ3 θ4
THUMOS14 0.7 0.7 0.3 0
ActivityNet v1.3 0.7 0.7 0.6 0.1

Each mini-batch contains examples sampled from a sin-
gle video. The ratio of three types of samples is fixed to
(1):(2):(3)=1:6:1. We set the mini-batch size to 32 on THU-
MOS14 and 64 on ActivityNet v1.3.

For more efficiency, we fix the number of neighborhoods
for each node to be 10 by selecting contextual edges with
the largest relevance scores and surrounding edges with the
smallest distances, where the ratio of contextual and sur-
rounding edges is set to 4:1.

In addition, we empirically found that setting Ai,j to 0
(when Ai,j < 0) leads to better results.

4. Loss function
Multi-task Loss. Our P-GCN model can not only pre-
dict action category but also refine the proposal’s temporal
boundary by location regression. With the action classifier,
completeness classifier and location regressors, we define a
multi-task loss by:

L =
∑
i

Lcls(yi, ŷi) + λ1
∑
i

[yi ≥ 1, ei = 1]Lreg(oi, ôi)

+ λ2
∑
i

[yi ≥ 1]Lcom(ei, ĉi),

(1)
where ŷi and yi ∈ {0, . . . , Nclass} is the predicted proba-
bility and ground truth action label of the i-th proposal in a
mini-batch, respectively. Here, 0 represents the background
class. ei is the completeness label. ôi and oi are the pre-
dicted and ground truth offset, which will be detailed below.
In all experiments, we set λ1 = λ2 = 0.5.
Completeness Loss. Here, the completeness term Lcom is
used only when yi ≥ 1, i.e., the proposal is not considered
as part of the background.
Regression Loss. We devise a set of location regressors
{Rm}Nclass

m=1 , each for an activity category. For a proposal,
we regress the boundary using the closest ground truth in-
stance as the target. Our P-GCN model does not predict the
start time and end time of each proposal directly. Instead, it
predicts the offset ôi = (ôi,c, ôi,l) relative to the proposal,
where ôi,c and ôi,l are the offset of center coordinate and
length, respectively. The ground truth offset is denoted as
oi = (oi,c, oi,l) and parameterized by:

oi,c = (ci − cgt)/li,
oi,l = log(li/lgt),

(2)

where ci and li denote the original center coordinate and
length of the proposal, respectively. cgt and lgt account for
the center coordinate and length of the closest ground truth,
respectively. Lreg is the smooth L1 loss and used when
yi ≥ 1 and ei = 1, i.e., the proposal is a foreground sample.

5. Details of Augmentation Experiments on
ActivityNet

Our P-GCN model can be further augmented by taking
the external video-level labels into account. To achieve this,



we replace the predicted action classes in Eq. (6) with the
external action labels. Specifically, given an input video, we
use UntrimmedNet to predict the top-2 video-level classes
and assign these classes to all the proposals in this video. In
this way, each proposal has two action classes.

To further compute mAP, the score of each proposal is
required. In our implementation, we follow the settings in
BSN by calculating

sprop = sact ∗ scom ∗ sbsn ∗ sunet, (3)

where sact and scom are the action score and completeness
score associated with the action class. sbsn represents the
confidence score produced by BSN and sunet denotes for
the action score predicted by UntrimmedNet.

6. Explanation and ablation study of θctx
The parameter θctx is a threshold value for constructing

contextual edges, i.e. r(pi,pi) > θctx. Since r(pi,pi) ∈
[0, 1], θctx can be chosen from [0, 1). An ablation study is
shown in Table 2. Our method performs well when θctx =
0.7, 0.8, 0.9.

Table 2. Results on THUMOS14 (Flow) with different θctx.
θctx 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mAP(tIoU=0.5) 45.31 45.29 45.37 45.61 45.65 45.82 45.79 46.53 46.64 46.45

7. Ablation study of boundary regression
We conducted an ablation study on boundary regression

in Table 3, whose results validate the necessity of using
boundary regression.

Table 3. Ablation results of boundary regression on THUMOS14.
mAP@tIoU=0.5 RGB Flow
without boundary regression 36.4 45.4
with boundary regression 37.3 46.5

8. Additional runtime compared to [52]
The MLP baseline is indeed a particular implementation

of [52], and it shares the same amount of parameters with

Table 4. Runtime/computation complexity in FLOPs/action local-
ization mAP on THUMOS14. We train each model with 200 iter-
ations on a Titan X GPU and report the average processing time
per video per iteration (note that proposal generation and feature
extraction are excluded for each model). For P-GCN, we choose
the number of sampling neighbourhoods as Ns = 4.

Method Runtime FLOPs mAP@tIoU=0.5
RGB Flow

MLP baseline 0.376s 16.57M 34.8 43.7
P-GCN 0.404s 17.70M 37.3 46.5

our P-GCN. We compare the runtime between P-GCN and
MLP in Table 4. It reads that GCN only incurs a relatively
small additional runtime compared to MLP but is able to
boost the performance significantly.

9. Additional Qualitative Results
Here, we show additional qualitative examples on THU-

MOS14 in Figure 5. The top and middle examples show that
our P-GCN model is able to predict boundary more accu-
rately. The example at the bottom suggests that our method
classifies the action correctly despite the similar context be-
tween “Cricket Bowling” and “Cricket Shot”.



Ground Truth Basketball Dunk0.9s 4.4s

P‐GCN (Ours) Basketball Dunk1.0s 4.3s

MLP Basketball Dunk1.1s 4.3s

time

time

Ground Truth Clean and Jerk80.2s 90.8s

P‐GCN (Ours) Clean and Jerk79.8s 90.7s

MLP Clean and Jerk78.8s 91.5s

(top)

Ground Truth Volleyball Spiking42.9s 44.2s 

P‐GCN (Ours) Volleyball Spiking42.8s 44.2s

MLP Volleyball Spiking42.6s 44.5s

time

Ground Truth Volleyball Spiking50.7s 52.4s

P‐GCN (Ours) Volleyball Spiking50.7s 52.2s

MLP Volleyball Spiking51.5s 53.4s

time

(middle)

Ground Truth Cricket Bowling75.8s 77.9s 

P‐GCN (Ours) Cricket Bowling75.7s 77.9s

time

Ground Truth Cricket Bowling63.5s 66.3s

P‐GCN (Ours) Cricket Bowling64.4s 66.2s

MLP Cricket Shot64.5s 66.2s

time
MLP Cricket Bowling75.2s 77.8s

(bottom)
Figure 5. Qualitative results on THUMOS14 dataset.


