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Figure 1. The “hypersweep curves” for the supervised baseline
trained on 10% of ILSVRC-2012. See text for details.

A. Detailed Results of the Supervised Baselines

Since we performed quite extensive hyperparameter
search and trained many models in order to find a solid
fully-supervised baseline on 10% and 1% of ILSVRC-
2012, we believe that it is valuable to report the full results
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Figure 2. The “hypersweep curves” for the supervised baseline
trained on 1% of ILSVRC-2012. See text for details.

to the community, instead of just providing the final best
model.

We present the results in the form of what we call “hy-
persweep curves” in Figures 1 and 2.

Each plot shows a large collection of models – each point
on each plot is a fully trained model. The curves are sorted
by accuracy, allowing testing sensitivity to different hyper-



parameters, not only comparing the best model.
For each curve, we plot the accuracy of models where

one of the hyperparameters is fixed.
Thus, by comparing curves, one can see:

1. Which value of a hyperparameter performs best by
looking at which curve’s rightmost point is highest.

2. How sensitive the model is to a hyperparameter in the
best case by looking at how far apart the curves are
from eachother at their rightmost point.

3. How robust a hyperparameter is on average by looking
at how similar the curves are overall.

4. How independent a specific hyperparameter value is
from all others by looking at the curve’s shape, and
whether curves cross-over (strong interplay) or not
(strong independence).

While the results shown in Figure 1 use the full (cus-
tom) validation set, those in Figure 2 were computed using
the validation set of size 1000, i.e. with only one image per
class. As we have shown in Section 7, this is sufficient to
determine the best hyperparameters, and we encourage the
community to follow this more realistic protocol.

As can be seen, weight decay and number of training
epochs are the two things which matter most when training
using only a fraction of ILSVRC-2012.

Perhaps the most surprising finding is that, contrary to
current folklore, reducing model capacity is detrimental
to performance on the smaller dataset. Neither reducing
depth, nor reducing width improve performance. In fact,
the deeper and wider models still outperform their shallower
and thinner counterparts, even when using only 1% of the
training data. Even more so, the wider models are more ro-
bust to other hyperparameter’s values as evidenced by their
curves being significantly higher on the left end. This is
in line with recent findings suggesting wider models ease
optimization [5, 1, 7].

Furthermore, when reducing the dataset size to 1%, we
found that adding the same color augmentation as intro-
duced by Exemplar is helpful. We thereafter tried adding
it to our best few models on 10%, but it did not help there.

Finally, while in the 1% case, learning-rate of 0.1 and
0.01 seem to perform equally well in the good cases (right
hand side of curves), we manually inspected training curves
and found that 0.1 is significantly less robust, typically not
learning anything before the first decay, and only catching
up later on.

While we trained thousands of models in order to rig-
orously test multiple hypotheses (such as that of reducing
model capacity), almost all boost in performance could have
been achieved in just a few dozen trials with intuitively im-
portant hyperparameters (weight decay and epochs), which
would take about a week on a modern four-GPU machine.

Overall, we hope that this thorough baseline investiga-
tion inspires the semi-supervised learning community to be
more careful with baselines, as those that we found perform
almost 20% absolute better than those previously reported
in the literature.

B. Randomness of S4L

Table 1. S4L performance for 9 runs with random image subsets.
Top-5 accuracies [%] are reported as mean±standard deviation.

Method 10% ImageNet 1% ImageNet

S4L-Rotation 83.91± 0.13 53.47± 0.22

S4L-Exemplar 83.76± 0.06 46.61± 0.25

There are two factors of randomness of a semi super-
vised model: (1) labeled subset sampling, (2) run with dif-
ferent seeds. In order to estimate the randomness in the
performance we train 9 models with random data subsets
and random seeds for our proposed S4L method. Table 1
presents the detailed results. Overall, we observe that stan-
dard deviation is fairly small across both subsets and differ-
ent runs and, therefore, our empirical evaluation provides
robust comparison of various techniques.

C. More Results in the Transfer Setup
In this section we present more results from the trans-

fer evaluation task on Places205 [8]. Table 2 shows the re-
sults for the models mentioned in our main paper. For each
method, we select the best model and evaluate its transfer
to Places205.

We follow the same setup as [3] to train a linear models
with SGD on top of frozen representations. The only differ-
ence is the training epochs, we train for 30 epochs in total
with learning rate decayed at 10 and 20 epochs respectively.
The learning rate is linearly ramped up for the first epoch.
Kolesnikov et.al. [3] train for 520 epochs with learning rate
decays at 480 and 500 epochs. The schedule used in our
paper is much shorter because of our finding that represen-
tation learned with labels are more separable and converges
significantly faster. (See in Section 6 of the main paper for
details.) To make fair comparison with the self-supervised
models, results in Table 2 with 0% labels are trained for 520
epochs to ensure their convergence.

From the plain supervised baselines, we observe that ei-
ther more labels or wider networks lead to more transfer-
able representations. Surprisingly, we found that pseudo
labels outperforms the other two semi-supervised baselines
in the transfer setup. On the 1% labels evaluation setup,
pseudo labels achieves the best result comparing to the other
methods. With 10% labels, S4L is comparable to the semi-
supervised baselines, and our MOAM clearly outperforms



Table 2. Accuracy (in percent) obtained by various individual
methods when transferring their representation to the Places205
dataset using linear models on frozen representations. All meth-
ods use the same plain ResNet50v2 base model, except for the
ones marked by ∗, which use a 4× wider network. When it was
necessary, a + marks longer transfer training of 520 epochs. The
“%-labels” column shows the percentage of ILSVRC-2012 labels
that was used for training the model.

Method %-labels top-5 top-1

Supervised 1 65.4 36.2
Supervised 10 75.0 44.7
Supervised 100 81.9 52.5
Supervised∗ 100 83.1 53.7

SS Rotation+ [3] 0 71.4 41.7
SS Exemplar+ [3] 0 69.0 39.8

Pseudolabels [4] 1 71.6 41.8
VAT [6] 1 64.9 35.9
VAT + EntMin [2] 1 65.9 36.4
Pseudolabels [4] 10 78.1 48.2
VAT [6] 10 76.4 45.8
VAT + EntMin [2] 10 76.4 46.2

SS Rotation [3] + Fine-tune 1 66.1 36.3
SS Exemplar [3] + Fine-tune 1 60.0 31.1
SS Rotation [3] + Fine-tune 10 75.4 45.9
SS Exemplar [3] + Fine-tune 10 75.6 45.9

S4L-Rotation 1 67.3 38.0
S4L-Exemplar 1 61.2 32.2
S4L-Rotation 10 76.4 46.6
S4L-Exemplar 10 75.9 45.9

MOAM∗ full 10 83.3 54.2
MOAM∗ + pseudo label 10 83.3 54.2
MOAM∗ 10 79.2 49.5

all other models trained on 10% of labels. More interest-
ingly, the MOAM (full) model on 10% is slightly better than
the 100% supervised baseline with the same 4× wider net-
work. This indicates that learning a model with multiple
losses may lead to representations that generalize better to
unseen tasks.
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