
Supplemental Material:
Orientation-Aware Semantic Segmentation on Icosahedron Spheres

Chao Zhang∗1 Stephan Liwicki∗1 William Smith2 Roberto Cipolla1,3

1Toshiba Research Europe Limited, Cambridge, United Kingdom
2University of York, United Kingdom 3University of Cambridge, United Kingdom

1. CNN Operation on the Icosahedron Mesh

We include the pseudo code of our main CNN opera-
tors, applied to the icosahedron mesh components, denoted
{Ci}4i=0. Note, many operations will be a direct result
of a combination of these operators (i.e. Pyramid Pooling
Layers [4]). First we detail padding in Algorithm 1. Our
orientation-aware hexagonal convolutions with arc-based
interpolations for north-alignment are given in Algorithm 2.
Algorithm 3 presents up-sampling. We emphasize, con-
volutions with kernel size 1, pooling, batch normaliza-
tion, non-linearities and biases are directly computed on
the spherical components without padding, through stan-
dard unchanged CNN operators.

Algorithm 1: Padding & WestPadding (top & left only)
Result: Given sphere components {Ci}4i=0 of height 2W

and width W compute padded {Pi}4i=0

for i← {0, . . . , 4} do // pad each component
Cw ← Cmod(i−1,5); // west neighbor

T ←
[
Cw(W,W) to Cw(1,W) 0

]
;

L←

 [
Cw(W + 1,W) to Cw(2W,W)

]T[
Cw(2W,W − 1) to Cw(2W, 1)

]T
0

;

Pi ←
[

T[
L Ci

]]; // top & left

if pad all sides then
Ce ← Cmod(i+1,5); // east neighbor

B ←
[
0 Ce(2W, 1) to Ce(W + 1, 1)

]
;

R←

 0[
Ce(1,W) to Ce(1, 1)

]T[
Ce(1, 1) to Ce(W + 1, 1)

]T
;

Pi ←
[[

Pi

B

]
R

]
; // bottom & right

end
end

∗Equal contribution: {chao.zhang, stephan.liwicki}@crl.toshiba.co.uk

Algorithm 2: Hexagonal Convolution (HexConv)
Result: Given components {Ci}4i=0 and precomputed

interpolation weights {Ai}4i=0 get filter results
{Fi}4i=0 of same size.

{Ci}4i=0 ← Padding({Ci}4i=0); // Alg. 1

W1 ←

 w2 w1 0
w3 w7 w6

0 w4 w5

; // Hexagon filter

W2 ←

 w3 w2 0
w4 w7 w1

0 w5 w6

; // Shift weights

for i← {0, . . . , 4} do
F 1
i ← conv2d(Ci,W1); // standard 2D conv

F 2
i ← conv2d(Ci,W2);

// Element-wise Interpolation
Fi ← Ai ⊗ F 1

i + (1−Ai)⊗ F 2
i

end

Algorithm 3: Bi-linear Up-sampling on Sphere
Result: Given components {Ci}4i=0 get bi-linear

up-sampling {Fi}4i=0.
{Ci}4i=0 ←WestPadding({Ci}4i=0); // Alg. 1
for i← {0, . . . , 4} do

Fi ← upsample(Ci); // 2× up-sampling
Cut 1 pixel width from all sides of Fi;

end

Additionally, for purpose of visualisation, we illustrate
the resulting convolutions, after north alignment in Figure 1.

2. Evaluation Details

In this section, we include details of network architec-
tures and parameters used in our experiments.

Figure 1. Interpolated convolutions on the unfolded mesh (r = 2).
Orientations are north-south aligned, while 5-degree connections
(red) are padded through duplication, and poles (blue) are ignored.

Level a Block b c s
4 1 HexConv – 16 1
4 16 ResBlock 64 64 2
3 64 ResBlock 256 256 2
2 256 MaxPool – – 1
– 256 Dense – 10 1

Table 1. HexRUNet-C architecture used in Omni-MNIST experi-
ments. a, b, c stands for input channels, bottleneck channels, and
output channels. s stands for strides: 2 means downsampling.

Branch 1 Branch 2
– Conv2D 1/1, (a, b),pool,BN,f
– HexConv, (b, b),BN,f

Conv2D 1/1, (a, c),pool,BN Conv2D 1/1, (b, c),BN
add, f

Table 2. Residual block (ResBlock), where a, b, c stands for input
channels, bottleneck channels and output channels. BN is short
for Batch Normalization, and f stands for Rectified Linear Unit
activation function (ReLU).

2.1. Omni-MNIST

The input signal for this experiment is on a level-4 mesh,
we use max pooling before the final dense layer rather
than average pooling used in [1]. We train our network
HexRUNet-C with a batch size of 15, initial learning rate
of 0.001, and use the Adam optimizer. We use the cross-
entropy loss for the digits classification task. The network
structure is illustrated in Table 1. The residual block is used
across this and other networks, and is shown in Table 2. To-
tal number of parameters of HexRUNet-C is 74,730.

2.2. Climate Pattern

The input signal for this experiment is on a level-5 mesh,
the number of input channels is 16. We use the same archi-
tecture as the semantic segmentation task in §2.3 (Table 3).
We have included two variants using 8 or 32 as the feature
maps in the first HexConv operation, called HexRUNet-8
and HexRUNet-32. We train our network with a batch size
60, initial learning rate of 0.001 with Adam optimizer. We
train using weighted cross-entropy loss, due to the unbal-

Level a Block b c s
5 4 HexConv – 16 1
5 16 ResBlock 16 32 2
4 32 ResBlock 32 64 2
3 64 ResBlock 64 128 2
2 128 ResBlock 128 256 2
1 256 ResBlock 256 256 2
0 256 HexConvT – 256 0.5
1 256x2 ResBlock 128 128 0.5
2 128x2 ResBlock 64 64 0.5
3 64x2 ResBlock 32 32 0.5
4 32x2 ResBlock 16 16 0.5
5 16x2 ResBlock 16 16 1
5 16 HexConv – 13 1

Table 3. HexRUNet architecture used in 2D3DS semantic segmen-
tation experiments. a, b, c stands for input channels, bottleneck
channels, and output channels. s stands for strides. When s = 2,
down-sampling is performed, and when s = 0.5, up-sampling is
done (using up-sampling and point-wise HexConv).

anced classes distributions. Total number of parameters is
7,543,331 for HexRUNet-32 and 476,747 for HexRUNet-8.
UGSCNN [1] uses 8 initial feature maps with a total of
328,339 parameters.

2.3. 2D3DS

The input signal for this experiment is on a level-5 mesh,
and the number of input channels is 4 for RGB and Depth.
The network structure is illustrated in Table 3. The net-
work contains two parts: encoder layers and decoder lay-
ers. At level-0, we apply upsampling and a point-wise Hex-
Conv operation to increase the resolution to level-1 (de-
noted HexConvT). In the subsequent layers, the input will
be concatenated with the output from previous layers at cor-
responding levels. This can be seen for rows in which the
input size is doubled.

We train our network with a batch size 32, initial learn-
ing rate of 0.001 with Adam optimizer, up to 500 epochs.
In contrast to UGSCNN [1] which uses 32 feature maps
and 5,180,239 parameters, we employ 16 feature maps for
the first layer, resulting in 1,585,885 parameters to ensure a
competitive comparison between the frameworks. Follow-
ing [1], class-wise weighted cross-entropy loss is used to
balance the class examples. Note that the number of output
channels is 13 rather than 15, since the 2D3DS dataset has
two invalid classes (“unknown” and “invalid”), which are
not evaluated during validation.

2.4. Omni-SYNTHIA

We create our own Omni-SYNTHIA dataset from SYN-
THIA data [3]. In the original SYNTHIA data, synthetic
views are captured with a stereo set-up consisting of 2 clus-
ters of 4 cameras. For Omni-SYNTHIA we use the left-

Figure 2. An example of our Omni-SYNTHIA dataset images
(top) and labels (bottom). (Top and bottom parts of the images
are cropped only for visualization.)

Input Operator Output
a HexConv,BN,f c
c HexConv,BN,f c
c Pool c

Table 4. U-Net encoder block (Encoder), where a, c stands for in-
put channels and output channels. BN is short for Batch Normal-
ization, and f stands for Rectified Linear Unit activation function
(ReLU).

Input Operator Output
a HexConv,BN,f b
b HexConv,BN,f b
b Up b
b Conv2D 1/1, BN, f c

Table 5. U-Net decoder block (Decoder), where a, b, c stands for
input channels, middle channels and output channels. BN is short
for Batch Normalization, and f stands for Rectified Linear Unit
activation function (ReLU).

stereo cluster which captures 4 viewpoints with a common
camera center. The views capture 90◦ intervals with a filed
of view of 100◦ each. We use the visual overlap to create an
omnidirectional view to our needs (fig. 2). Since perspec-
tive images are of resolution 760× 1280 the final equirect-
angular RGB images are set to 2096 × 4192. In particular,
we keep height/width ratio 1 to 2, and compute the overlap
between adjacent viewpoints to find the needed equirectan-
gular resolution.

Multiple sequences are acquired simulating different
cities of four seasons with drastic change of appearance.
Ground-truth includes pixel-wise semantic labels of 14
classes (including “invalid”). In our experiments, the five
“SUMMER” sequences are chosen to make our omnidi-
rectional dataset. Specifically, sequences simulating New
York-like (1 and 2) and Highway-like (5 and 6) scenes are
used as training set, while European-like sequence (4) is
employed for validation. For each sequence, we choose
every second frame. In total, 2,269 equirectangular RGB
images are generated (1818 for training, 451 for testing).
Depth maps are not used in this experiment.

Level a Block b c s
6 3 Encoder – 32 2
5 32 Encoder – 64 2
4 64 Encoder – 128 2
3 128 Encoder – 256 2
2 256 Decoder 512 256 0.5
3 256x2 Decoder 256 128 0.5
4 128x2 Decoder 128 64 0.5
5 64x2 Decoder 64 32 0.5
6 32x2 HexConv,BN,f – 32 1
6 32 HexConv,BN,f – 32 1
6 32 HexConv – 13 1

Table 6. HexUNet architecture used in Omni-SYNTHIA seman-
tic segmentation experiments. a, b, c stands for input channels,
bottleneck channels, and output channels. s stands for strides.
When s = 2, downsampling is performed, and when s = 0.5,
up-sampling is applied using bi-linear up-sampling and a point-
wise convolution.

In this experiment, we use the standard U-Net architec-
ture [2] to facilitate weight transfer from planar U-Net. We
call this “HexUNet”, and the architecture is illustrated in
Table 6. Table 4 and 5 show the detailed encoder and de-
coder block. Our model has a total of 7,245,101 parameters.
Batch size 32, 8 and 2 are used for resolution level 6, 7 and
8 respectively to ensure memory fit on our GPU.

Comparision with state of the art Spherical input at
level-6 is the maximum resolution we could fit in GPU us-
ing the provided implementation of [1], so we choose to
compare our method to UGSCNN using data sampled at
level-6 mesh. Planar U-Net [2] using original perspective
images is also evaluated. Images are sub-sampled to match
the icosahedron resolution.

Specifically, we count the number of vertices on the
icosahedron mesh that fall onto the image region. We then
set the image resolution to be approximately equivalent to
this number of vertices, resulting in image resolution 48×80
for level-6, 96 × 160 for level-7 and 192 × 320 for level-8
meshes. To compare network efficiency in terms of train-
ing time, we show the average training time on the Omni-
SYNTHIA dataset. Evaluations are performed on a single
Nvidia 1080Ti GPU with 11 Gb memory. Average training
times are obtained by averaging the first 10 epochs.

Evaluation of Perspective Weights Transfer Using
an orientation-aware hexagonal convolution kernel, our
method allows direct weights transfer from perspective net-
works. Initialized with the learned filters of U-Net, we re-
port the results as HexUNet-T in Table 7. To show the ef-
fectiveness of direct weights transfer, we limit weight re-
finement to up to 10 epochs. Results after just one re-
training epoch are also shown in Table 7. We emphazie,

Method r = 6 r = 7 r = 8
UNet (Perspective) 38.8 44.6 43.8
HexUNet-T (1 epoch) 29.4 30.3 35.9
HexUNet-T (10 epochs) 36.7 38.0 45.3
HexUNet (10 epochs) 20.6 10.9 15.1
HexUNet (500 epochs) 43.6 48.3 47.1

Table 7. Comparison of perspective weights transfer on Omni-
SYNTHIA.

rather than to further improve overall accuracy, we aim to
reduce the number of training epochs with spherical data
by weights transferal. In particular, the empirical evaluation
shows the effectiveness of the weights transfer, as it reaches
competitive results with much less training cost (in terms
of epochs), especially at resolution r = 8. We addition-
ally comparing to source network UNet and our spherical
HexUNet trained on up to 10 and 500 epochs.

3. Additional Results

We show additional semantic segmentation results for
semantic segmentation on 2D3DS and Omni-SYNTHIA.

3.1. 2D3DS Results

We show additional semantic segmentation results in
Fig. 3. Cases (a-c) demonstrate examples on which both
our proposed method and UGSCNN [1] fail to predict the
correct labels for some objects. The RGB data of case (a)
shows bright illuminations which our method wrongly con-
sider as windows. Windows and bookcases are confused
in case (b). As shown in case (c), it is challenging to seg-
ment the boundary of a bookcase. Our method failed to
recognize windows and chairs in case (d). It also poses a
hard sample for UGSCNN. Finally, we argue that some of
the ground-truth labels are not accurate, for example, while
case (e) presents a bookcase some parts of it are labeled as
wall. Even though, our method could adequately predict
the bookcase. We also believe that with better input resolu-
tion, and with better architectures, our proposed method is
capable of improving over these cases.

3.2. Omni-SYNTHIA

We conclude with additional results for the Omni-
SYNTHIA resolution evaluation. In general, finer segmen-
tation is achieved at higher resolution. Furthermore, as ob-
served in case (a), (c) and (f) segmentation of small objects
and boundaries is improved. In (b) an instance of a cyclist
is shown. Here the model classifies misc for low resolution,
and pedestrian for r = 7 and r = 8. An indication that the
network architecture is not ideal for capturing context at all
resolutions is case (d), where buildings are misclassified as
misc.

References
[1] Chiyu Max Jiang, Jingwei Huang, Karthik Kashinath, Prab-

hat, Philip Marcus, and Matthias Nießner. Spherical CNNs on
unstructured grids. In ICLR’19, 2019. 2, 3, 4, 5

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI’15, pages 234–241, 2015. 3

[3] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In CVPR’16, pages 3234–3243, 2016. 2

[4] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2881–2890, 2017. 1

R
G

B
G

T
U

G
SC

N
N

[1
]

H
ex

R
U

N
et

a b c d e

beam board bookcase ceiling chair clutter column
door floor sofa table wall window unknown

Figure 3. Qualitative segmentation results and failed cases on 2D3DS dataset.

R
G

B
G

T
r
=

6
r
=

7
r
=

8

a b c

R
G

B
G

T
r
=

6
r
=

7
r
=

8

d e f
invalid building car cyclist fence marking misc pedestrian pole road sidewalk sign sky vegetation

Figure 4. Unfolded visualizations of semantic segmentation results on Omni-SYNTHIA dataset at different resolutions.

