Supplementary Material for
DeepHuman: 3D Human Reconstruction from a Single Image

A. Overview

This supplementary document provides technical details
that are supplementary to the main paper. We first describe
how we obtain the dense semantic representation given an
image of a person in Sec[B] We then present details about
the network implementation in Sec[C| Details about the data
capture system as well as our THuman dataset are presented
in Sec[D] We elaborate the comparison setup in Sec[E] In
Sec|H we add a comparison experiment against two relevant
methods, both of which require multiview images as input.
Finally we show a failure case in Sec|[G]

B. SMPL Estimation and Dense Semantic Rep-
resentation

Our method starts from SMPL estimation from the in-
put image, and generates a dense semantic representation
from the estimated SMPL model. To estimate a body from
the image, we exploit the state-of-the-art methods HMR[6]
and SMPLIify[3]], which are both capable of inferring the
shape and pose parameters of SMPL[9] from a single im-
age. HMR infers SMPL model with a neural network,
while SMPLIify aligns SMPL model with the keypoint de-
tection results through non-convex optimization. We found
that the two methods have complementary characteristics:
the predictions of HMR are always plausible but not well-
aligned with the color image, while SMPLify aligns the
SMPL model with detected keypoints very well but relies
on initialization to output plausible results. Therefore, we
combine HMR and SMPLify to obtain an SMPL estimation
as accurately as possible. Specifically, we first use HMR to
obtain an initial SMPL estimation, and then improve its ac-
curacy using SMPLify. Before applying SMPLIify, we use
AlphaPose[17] to detect keypoints on the image.

The estimated shape and pose parameters determine a
polygon mesh representation of the body through linear
shape blending and pose skinning[9]]. However, it is hard to
feed the polygon mesh into a deep neural network. There-
fore, inspired by “Vitruvian Manifold” [[14], we introduce
a dense semantic representation generated from SMPL.
Specifically, we predefine a semantic code C(v) for a vertex

v on SMPL according to its spatial coordinate at rest pose:
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where (2 (v), yo(v), 20(v)) is the spatial coordinate of v on
a SMPL in mean shape at rest pose, and [Zin, Tmaz] X
[Zmin, Zmaz] X [Zmins Zmaz) is the bounding of that SMPL
model. Given a SMPL model corresponding to a human
image, we render the semantic code onto the image plane to
obtain a semantic map M and generate a semantic volume
'V, by first voxelizing the SMPL model into the voxel grid
and then propagating the semantic codes into the occupied
voxels. M and V4 make up the dense semantic represen-
tation for the input image.

We use semantic maps/volumes instead of binary mask
because we believe that such a dense semantic representa-
tion can provide the CNN clues about the correspondences
between the 2D image plane and 3D space. To be more spe-
cific, a pixel/voxel with a semantic code can be mapped to a
corresponding point on the SMPL surface that has an iden-
tical code. In this way we obtain a bidirectional relationship
between the volume and the image using the SMPL surface
as a bridge.

C. Network Implementation Details

The volume-to-volume network # takes as input a se-
mantic volume with 128 x 192 x 128 resolution, and out-
puts an occupancy volume with the same shape. The im-
age encoder G concatenates as input the given RGB image
and the corresponding semantic map, both of which have a
resolution of 192 x 128. Our normal refinement U-Net R
takes as input the concatenation of the RGB image, seman-
tic map and upsampled normal projection result, and the
input/output resolution of R is 384 x 256. The architecture
details are shown in Tab[ll

During network training, the parameters are set to
Ars = Ags = 0.1, Ay = 0.01,v = 0.7. We exploit a two-
stage training procedure: first pre-train the vol2vol network
and the normal refinement network, and then fine-tune them
jointly with the combined loss. We used Adam [8] with de-
fault parameters as the optimizer. The learning rate is fixed



Table 1. Network Architecture Details.

Net Layer Kernel  Stride Output
conv+lrelu 4 2 96 X 64 X 8
conv-+lrelu 48 x 32 X 16

g conv-+lrelu 24 x 16 x 32
conv-+lrelu 12 x 8 x 64
conv+lrelu 6 x4 x 128
conv+lrelu 64 X 96 X 64 x 8
conv-+lrelu 32 X 48 x 32 x 16
conv+lrelu 16 x 24 x 16 x 32
conv+lrelu 8 X 12 x 8 x 64
conv+lrelu 4x6x4x128

8 X 12 x 8 x 64
16 x 24 x 16 x 32

H transconv-+lrelu
transconv-+lrelu
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transconv-+lrelu 32 x 48 x 32 x 16
transconv+lrelu 64 X 96 X 64 x 8
transconv-+lrelu 128 x 192 x 128 x 4
conv+sigmoid 128 x 192 x 128 x 1
conv-+lrelu 192 x 128 x 16
conv+lrelu 96 x 64 x 32
conv+lrelu 48 x 32 x 32
conv-+lrelu 24 x 16 x 32
R conv+lrelu 12 x 8 x 32
transconv+lrelu 24 x 16 x 32
transconv-+lrelu 48 x 32 x 32
transconv+lrelu 96 X 64 x 32
transconv-+lrelu 192 x 128 x 16
transconv+lrelu 384 x 256 X 8
conv+tanh 3 1 384 x 256 x 3

* The term “conv” is convolution for short, “transconv” is transposed
convolution and “Irelu” is Leakly ReLU.

to 2e-4 during the whole training procedure, and the batch
size is set to be 4. Training our network takes about 1 day
for 18 epochs on a single TITAN X GPU. Given a single
image and its SMPL estimation, it takes about 147 ms to
execute our network. Visible mesh refinement (Line 297)
using a non-optimized solver takes 4 min, which could be
reduced to seconds if parallelizing the solver on GPU.

D. Data Capture System and THuman Dataset

Our capture system is based on the single-view RGB-
D DoubleFusion [[18] technique. DoubleFusion utilizes a
double-layer representation and incorporates a motion prior
derived from the SMPL [9]]. It simultanuously solves skele-
ton motions and non-rigid deformation according to the
depth observation at the current frame. After getting the
motion field, depth pixels in the current frame are fused
into a reference volume as described in [12]]. As the ob-
served surface is gradually fused and deformed, the shape
and pose parameters of the body layer are also gradually
optimized through volumetric shape-pose optimization. In
this way the two layers can benefit from each other, leading
to robust tracking and accurate reconstruction.

The available DoubleFusion technique performs only ro-
bust fusion of detailed surface geometries. To obtain full-
body texture, we can directly perform color or albedo fusion
in a similar way to depth fusion. However, the fused texture

blurs when fast body motion occurs. Thus we develop a
two-stage capture procedure. In the first stage, the subject
actors are required to rotate slowly and perform some basic
surface completion motions to obtain a surface geometry
that is as complete as possible and clear texture recovery of
the surface as well. After that, in the second stage, we dis-
able geometry fusion and texture update, but still perform
the non-rigid surface registration based on the input depth
information. In this way, we still capture non-rigid motion
details of the subject’s surface.

In order to obtain human mesh data under natural but
diverse poses, our system presents to the subject a reference
pose randomly sampled from MOSH[10] dataset every 6
seconds and requires the performer to imitate the reference
pose in the second stage. Note that the 6-second interval is
usually long enough for subjects to recognize the presented
pose and prepare for imitation. At the end of every 6-second
interval, the system automatically saves the RGBD image,
the 3D surface mesh and its corresponding SMPL model in
the current live pose. After data capture, we post-process
the raw meshes through hole filling [7]], remeshing [5] and
isolated artifact removal.

After approximately 70 hours of data capture using only
one capture setup, we achieve capturing and reconstruction
of 230 subject characters, with each character correspond-
ing to about 30 poses. This data leads to 7000 data items in
our THuman dataset; some examples are shown in Fig.
Each item contains a textured surface mesh, a RGBD image
from the Kinect sensor, and an accompanying well-aligned
SMPL model. Note that the topology of the textured models
is not the same for the variety of body shapes and clothing
styles.

As mentioned in the main paper, the training corpus are
synthesized using the textured surface meshes and the ac-
companied SMPL models. We use the textured surface
meshes to generate color images and ground-truth occu-
pancy volumes, and use the accompanied SMPL models to
generate semantic maps and volumes. To augment the train-
ing data, we apply random perturbations to the shape and
pose parameters of the SMPL models. We also apply ran-
dom cropping and random brightness adjustments to color
images during network training.

E. Comparison Experiment Details
E.1. Competing Approaches

We compare our method against three state-of-the-art
deep learning based approaches for single view 3D human
reconstruction: HMR[6], BodyNet[16] and SiCloPel[11]].
To eliminate the effect of dataset bias, we fine-tuned the pre-
trained model of HMR[6] and BodyNet[16] with the same
training data as we use to train our network. Since SiCloPe
is not open-source, we are unable to finetune it and hence



Figure 1. Example meshes sampled from our dataset.

only present qualitative comparison in the comparison sec-
tion.

(1) HMR. In [6], Kanazawa et al. proposed a neural
network to directly regress the shape and pose parameter of
SMPL from an RGB image. The output of HMR is a 75-D
vector, which can be used to generate a triangular mesh of
SMPL through linear shape blending and pose skinning[9].
It is the state-of-the-art among available methods for single-
view pose and shape estimation[6), 3| 4] [13]. We fine-
tuned the pretrained HMR model using the color images
and the corresponding ground-truth shape/pose parameters
in our synthetic training data.

(2) BodyNet. BodyNet is a neural network for direct in-
ference of volumetric body shape from a single image. The
output of BodyNet is a 128 x 128 x 128 occupancy volume
with similar definition in Sec.3. BodyNet is the most re-
lated work to this paper. We fine-tuned the whole network
of BodyNet using the color images and the ground-truth oc-
cupancy volumes in our training set.

(3) SiCloPe. SiCloPe[11]] is another voxel-based
method, but it recovers certain details by synthesizing mul-
tiview silhouettes of the subject given the input silhouette
and the 3D skeleton pose of the subject.

E.2. Comparison Metrics

(1) For qualitative comparison, we feed all the net-
works with the same images and convert the network output
into a triangular mesh. The results are shown in Fig.5 in the
main paper.

(2) The quantitative comparison is conducted on the
testing set of our synthetic data. We convert the out-
put of HMR to occupancy volumes with a resolution of
128 x 192 x 128. We also upsampled the output of BodyNet
by a factor of 1.5 using trilinear interpolation, and then crop
the volume to make it have the same resolution. After that
we use the mean Intersection-over-Union (IoU score) be-
tween predicted 3D volumes and their ground-truth as the
comparison metric. It should be noted that the predicted
volume and the ground-truth may be unaligned along the z-
axis because of depth ambiguities. Therefore, we shift the
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Figure 2. Comparison against [2]](a) and [1]](b). For each compari-
son, from left to right: input image, result of the compared method,
and our result. Please zoom in to view the detailed surfaces that
we reconstructed.

predicted volume along z-axis to search for the best align-
ment (i.e., to maximize IoU score between the ground-truth
volumes and the predict ones), and regard the maximum
IoU score as the final score.

We also consider using the Chamfer Distance (CD) or
Earth Movers Distance (EMD) as an additional metric.
However, both metrics are computationally heavy as they
require distance calculation between two high resolution
meshes containing large number of points. Therefore, we
did not use CD or EMD for evaluation in our experiments.

F. More comparison

In this section, we compare our method against and
[1]]. Note that they both require multiple images or a video
sequence from a camera as input, while our method can re-
construct human under various poses using only a single
image. We carry out the comparison in Fig[2 using the ex-
ample data in their open-sourced projects. Note that our
method achieves more reasonable shape reconstructions on
these A-pose inputs.

G. Failure Case

As mentioned in the main paper, our method relies on
HMR and SMPLify to generate a dense semantic represen-
tation from SMPL model. Consequently, we cannot give an
accurate reconstruction if the estimation of SMPL model is
erroneous. Here we show an example in Fig[3] However,



Figure 3. A failure case. HMR gives wrong prediction of the sub-
ject’s upper body pose (middle), which results into wrong recon-
struction by our network (right).

the reliance on SMPL estimation ensures our robustness.
Furthermore, the last two years have witnessed a rapid de-
velopment in this topic for better human shape and pose
estimation from a single image. We believe that the depen-
dency on SMPL estimation will not be a bottleneck in the
future.

References

[1] T. Alldieck, M. Magnor, B. L. Bhatnagar, C. Theobalt, and
G. Pons-Moll. Learning to reconstruct people in clothing
from a single RGB camera. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), jun 2019.

[2] T. Alldieck, M. A. Magnor, W. Xu, C. Theobalt, and G. Pons-
Moll. Video based reconstruction of 3d people models. In
IEEE CVPR, 2018.

[3] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero,
and M. J. Black. Keep it SMPL: Automatic estimation of 3D
human pose and shape from a single image. In ECCV, pages
561-578, 2016.

[4] P. Guan, A. Weiss, A. O. Balan, and M. J. Black. Estimating
human shape and pose from a single image. In /EEE ICCV,
pages 1381-1388, 2009.

[5S] W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-Hornung.
Instant field-aligned meshes. ACM Trans. Graph (Proc. SIG-
GRAPH ASIA), 34(6), Nov. 2015.

[6] A.Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-
to-end recovery of human shape and pose. In IEEE CVPR,
2018.

[7] M. Kazhdan and H. Hoppe. Screened poisson surface recon-
struction. Acm Trans. Graph, 32(3):1-13, 2013.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[9] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black. SMPL: A skinned multi-person linear model. ACM
Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1—
248:16, Oct. 2015.

[10] M. M. Loper, N. Mahmood, and M. J. Black. MoSh: Motion
and shape capture from sparse markers. ACM Tran. Graph.
(Proc.SIGGRAPH Asia), 33(6):220:1-220:13, Nov. 2014.

[11] R. Natsume, S. Saito, Z. Huang, W. Chen, C. Ma, H. Li,
and S. Morishima. Siclope: Silhouette-based clothed people.
CoRR, abs/1901.00049, 2019.

[12]

[13]

[14]

(15]

(16]

(17]

(18]

R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time.
In IEEE CVPR, 2015.

V. Tan, I. Budvytis, and R. Cipolla. Indirect deep structured
learning for 3d human body shape and pose prediction. In
BMVC, 2017.

J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-
vian manifold: Inferring dense correspondences for one-shot
human pose estimation. In /EEE CVPR. IEEE, June 2012.
H. Tung, H. Tung, E. Yumer, and K. Fragkiadaki. Self-
supervised learning of motion capture. In NIPS, pages 5242—
5252, 2017.

G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer, I. Laptev,
and C. Schmid. BodyNet: Volumetric inference of 3D hu-
man body shapes. In ECCV, 2018.

Y. Xiu, J. Li, H. Wang, Y. Fang, and C. Lu. Pose Flow:
Efficient online pose tracking. In BMVC, 2018.

T. Yu, Z. Zheng, K. Guo, J. Zhao, Q. Dai, H. Li, G. Pons-
Moll, and Y. Liu. Doublefusion: Real-time capture of human
performances with inner body shapes from a single depth
sensor. In IEEE CVPR, June 2018.



