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1. Derivation of Label Inference using Mean Field Algorithm in Section 3.3
Previously, we are given gallery-to-tracklet similarity Sgt =

[
sgtli
]
, tracklet-to-tracklet similarity Stt =

[
sttij
]

and cannot-
link matrix Ltt =

[
Ltt
ij

]
. We have the energy function

E(x,y) =
∑
i∈V

ψx
u(xi) +

∑
i∈V,j∈N (i)

[
ψp
u(y

p
i→j) + ψn

u(y
n
i→j) + ψp

t (xi, xj , y
p
i→j) + ψn

t (xi, xj , y
n
i→j)

]
(1)

where the potentials are defined as

ψx
u(xi = l) = −Tgt · sgtli

ψp
u(y

p
i→j = 1) = −Ttt · sttij

ψn
u(y

n
i→j = k) =

{
0 if Ltt

ij = k

+∞ otherwise

ψp
t (xi, xj , y

p
i→j) =

{
αp if ypi→j = 1 and xi 6= xj

0 otherwise

ψn
t (xi, xj , y

n
i→j) =

{
αn if yni→j = 1 and xi = xj

0 otherwise
(2)

where Tgt and Ttt are corresponding temperature factors, k ∈ {0, 1}, αp is the positive penalty and αn is the negative penalty.
Directly looking for the label assignment that minimizes E(x,y) is a combinatorial optimization problem which is in-

tractable. Instead, similar to [9], we use mean field method to approximate the distribution P (X,Y) ∝ exp(−E(X,Y)) by
the product of independent marginals

Q(X,Y) =
∏
i

Qi(Xi)
∏

j∈N (i)

Qp
i→j(Y

p
i→j)Q

n
i→j(Y

n
i→j) (3)

Minimizing the KL-divergence D(Q||P ) between P (X,Y) and Q(X,Y) yields the following updating equations:

∗Currently working in Waymo.



1) For the tracklet nodes, we have

Q
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where Zi is the normalization factor and Q(t)(·) is the approximated distribution at the t-th iteration. It is initialized by

Q
(0)
i (xi = l) =

1

Zi
exp{Tgtsgtli } (5)

2) For the positive gates, we have
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For normalization purpose, we set the factor Zp
i→j so that

∑
j∈N (i)Q

p,(t)
i→j (1) = 1. Thus we have
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It is initialized by
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p
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exp{Tttsttij)} (8)

3) For the negative gates, we have
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Since

ψn
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n
i→j = k) =
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ij = k

+∞ otherwise
(10)

for k ∈ {0, 1}, we have

Q
n,(t)
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n
i→j = k) =

{
k if Ltt

ij = 1

1− k otherwise
(11)
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(a) Update Sample Distributions
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(b) Update Gate Probabilities

Figure 1: (a) shows the update of q1. Distribution of the neighbors are weighted by the probability of opening gates and collected as
positive and negative messages, respectively. The new marginal distribution is updated by the sum of messages and the unary scores. Grey
boxes are the ground truth labels of samples. (b) shows the update of gate πp

1→2 and πp
1→3. Distributions of sample node pairs are used

to modify the marginal probability of positive gates. We can see that the connection between sample 1 and 3 is misleading since stt13 is
large but they belong to different identities. After updating the probability of gates by utilizing the information from neighboring nodes,
πp
1→3 drops comparing to (a), results in less positive information passing between sample 1 and 3 in the next iteration. � is inner product

operation.

for k ∈ {0, 1}, t = 0, . . . ,K.
Let q(t)

i =
[
Qi(1)

(t) · · · Qi(C)
(t)
]T

be the identity distribution vector of node i at the t-th iteration. π
p,(t)
i→j =

Q
p,(t)
i→j (1) and πn,(t)

i→j = Q
n,(t)
i→j (1) be the probability of opened positive and negative gates on edge i → j respectively, we

have the following message passing equations
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where Sgt
:,i is the ith column of Sgt. And

π
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Thus the marginal probability of negative relation is fixed and not updated in the iterations.
Two illustrations of message passing and node update are shown in Figure 1.

2. Implementation Details for Section 4.2
2.1. Cast Search in Movies

2.1.1 Pre-processing details

For the CSM dataset, we use the 256-dimensional facial and body features provided by [7]. We first flatten both facial and
body features in each tracklet by average pooling. Denote facial features for galleries as Fg

F , flattened facial features for
tracklets as Ft

F and flattened body features for tracklets as Ft
B . Three linear embedding matrices Wgt

F , Wtt
F , Wtt

B , all with
size 256× 256 are applied on the features respectively for more discriminative representation.

We use the cosine similarity between Wgt
F Fg

F and Wgt
F Ft

F as the gallery-to-tracklet similarity Sgt = Sgt
F,cos. To improve

the reliability of positive connections, we use the fusion of the cosine similarities between Wtt
FF

t
F and between Wtt

BF
t
B



as the tracklet-to-tracklet similarity Stt = λfS
tt
F,cos + (1 − λf )Stt

B,cos, with fusion weight λf . No detection information is
provided in this dataset so the cannot-link matrix Ltt is all-zero. We feed Sgt, Stt and Ltt into the proposed UGG module.
The module iterates for K iterations and produce the output similarity S̃gt.

2.1.2 Testing details

For testing, we use all the tracklets in each movie to build the graph. The neighborhood N (i) for tracklet i is defined as
the top 10% of the tracklets in the movie with the largest tracklet-to-tracklet similarity score to tracklet i. We apply identity
embedding matrices on the features and compute similarities. Then the UGG module is used to produce the output similarity
scores S̃gt. Using the validation set, we choose parameters Tgt = 10, Ttt = 15, αp = 5, K = 2, λ = 0.1 and λf = 0.1 for
the IN protocol and Tgt = 20, Ttt = 30, αp = 15, K = 2, λ = 0.1 and λf = 0.1 for the ACROSS protocol.

2.1.3 Training details

For end-to-end training, we train the embedding matrices Wgt
F , Wtt

F , and Wtt
B , together with temperatures Tgt and Ttt in the

UGG module, implemented in PyTorch [10]. For each movie, we use all the galleries and randomly pick 1/8 of the tracklets
to construct the graph. The overall loss is computed by (14) in the paper. The network is trained using Adam solver [8] for
20 epochs with batch size 2 (2 movies in each batch). The initial learning rate is 1 × 10−4. All embedding matrices are
initialized as identity matrix. We initialize Tgt and Ttt by 10 and 15 respectively and fix other parameters as αp = 5, K = 2,
λ = 0.1 and λf = 0.1 during training.

2.2. IARPA Janus Surveillance Video Benchmark

2.2.1 Pre-processing details

For the IJB-S dataset, we follow the pre-processing steps in [16]. We employ the multi-scale face detector DPSSD [12] to
detect faces in surveillance videos. We use the facial landmark branch of All-in-One Face [13] as the fiducial detector. Face
alignment is performed using the seven-point similarity transform. Similar to [16], we use a ResNet-101 [6] and a Inception-
ResNet-v2 [15], both trained on the union of the MSCeleb-1M dataset [4], the UMDFaces dataset [1], and the UMDFaces
Video dataset with the crystal loss [11], to represent the faces. A triplet probabilistic embedding (TPE) [14] trained on the
UMDFaces dataset is applied on face features for dimensionality reduction to 128.

We also use the Mask R-CNN [5] implemented on Detectron [3] to detect the bodies in the videos and match each body to
the face with the highest overlap ratio. The detected bodies are represented by a re-id network with ResNet-50 architecture
trained on the Market1501 dataset [17], implemented on [18]. The network produces 2048-dimensional feature for each
body.

We use SORT [2] to construct tracklets for every face appearing in the videos. Facial and body features are first flattened
by average pooling for each gallery and tracklet. Sgt and Stt are computed in the same way as the CSM dataset, except there
is no embedding matrices applied since no training set available on IJB-S. We use the bounding box information from the
detector to build the co-occurence cannot-link matrix Ltt such that all the tracklets with distinct bounding boxes appear in
the same frame will have cannot-links between them.

2.2.2 Testing details

For the IJB-S dataset we empirically use the hyperparameter configuration of Tgt = 15, Ttt = 15, αp = 10, αn = 2, K = 4,
λ = 0.1 and λf = 0.1 in the UGG module for testing. All the other details are the same as the CSM dataset.

3. Implementation Details for Section 4.6
For the semi-supervised training experiments, we follow the training settings on the CSM dataset in general. The differ-

ences are

• For each movie, we use all the galleries and randomly pick about 1/4 of the tracklets to construct the graph. Then we
randomly pick 25% tracklets in the graph as labeled samples, and the rest 75% as unlabeled samples.

• We only train the 256×256 linear embedding matrix Wgt
F on the face features. Other embeddings are fixed as identity

matrices.



• During training, we fix the parameters as Tgt = 10, Ttt = 15, αp = 5, K = 2, λ = 0 and λf = 0.1. λ = 0 because
we are not training the pairwise embeddings.
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