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In this supplementary material, we first introduce our demo video in Section 1. We then discuss the Spherical Harmonics

we used in our paper in Section 2. In Section 3, we show the network structure for 1024×1024 images. We give more details

about the network structure in Section 4. More visual comparisons with the state-of-the-art methods are shown in Section 7.

We show the results of our proposed method on some challenging images in Section 8. Some results on 1024× 1024 images

are then shown in Section 9. At last, we show the limitations of the proposed method in Section 10.

1. Demo Video

Please refer to the accompanying “demo.mp4” video for relit images generated by the proposed method with different

target SH lighting which changes dynamically. We show a half sphere rendered under the same lighting as the face on

the left hand side for reference. The portrait image of Obama is downloaded from the Internet. Images of Flickr portrait

images are from the Flickr portrait dataset [7]. All the images in the video are generated using our network that works on

1024×1024 images; we re-size the result to the original size of the image for visualization purposes. Each frame is generated

independently; we have not imposed any temporal consistency on the results, and yet the results are realistic and temporally

coherent. Due to file size limit, for more videos, please refer to the project webpage https://zhhoper.github.io/

dpr.html

2. More Details about Spherical Harmonics Lighting

We use second-order Spherical Harmonics (SH) [1, 5] to represent the lighting. As a result, our lighting is represented as a

9 dimensional vector. This is in accordance with many existing works that use SH to model the lighting of the face [6, 10, 9]

and the lighting prior dataset [2]. More specifically, the 9 spherical harmonics coefficients, in the Cartesian coordinates, of

the surface normal N = (x, y, z), are:
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Given a surface normal N = (x, y, z) and a SH lighting L, the rendering equation f defined in Equation 1 of the paper is:

f(N,L) =

2
∑

n=0

n
∑

m=−n

αnYnmlnm,
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4π
2n+1

, and lnm is the corresponding element in L.

∗Hao Zhou is currently at Amazon AWS.
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Due to the ambiguity of color between lighting and reflectance, we assume the SH lighting is monochromatic. For an

input face image, we convert the RGB pixel values to Lab color space and only relight the L channel. The relit L channel is

then combined with the ab channels to form the final output image.

3. Network Structure for 1024× 1024 Images

In this section, we show some details of our network for 1024 × 1024 images. The network structure for 1024 × 1024
images are shown in Figure 1. It is the same as the network structure for 512 × 512 images shown in Figure 5 in the paper,

except the upsample layer and downsample layer before and after the Hourglass block.

To fine tune the network trained on 512× 512 images using 1024× 1024 images, we use the loss defined in Equation 6 in

the paper:

L = LI + LGAN + λLF ,

where λ = 0.5. We fine tune the network for four epochs.
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Figure 1. Network structure for 1024 × 1024 images. It is the same with the network structure shown in Figure 5 in the paper, except the

upsample and downsample layer.

4. Details of the Network Structure

In this section, we introduce the details of our Hourglass network. h1, h2, h3, h4 are downsample layers followed by

residual blocks defined in [3]. h5, h6, h7 and h8 are designed as residual blocks [3] followed by upsample layers. s1, s2, s3

and s4 are defined to be residual blocks [3]. For convenience, we defined one convolutional block as one convolutional layer

followed by a batch normalization layer and ReLU activation. c1 is designed to have one convolutional block. c2 is designed

to have three convolutional blocks (denoted as c2 1, c2 2, c2 3) followed by one convolutional layer (denoted as c2 o). More

details of these blocks are shown in Table 1. Note that the output of h4 has 155 channels, from which 128 channels belong to

face features Zf and 27 channels belong to lighting feature Zs.

Table 1. Details about Each Block of Our Network.
h1 h2 h3 h4 h5 h6 h7 h8 s1 s2 s3 s4 c1 c2 1 c2 2 c2 3 c2 o

input channel number 16 16 32 64 155 64 32 16 64 32 16 16 1 16 16 16 16

output channel number 16 32 64 155 64 32 16 16 64 32 16 16 16 16 16 16 1

filter size 3 3 3 3 3 3 3 3 3 3 3 3 5 3 1 1 1

The lighting prediction network, which takes Zf as input and predicts L, is defined as an average pooling layer followed

by two fully connected layers whose number of channels are 128 and 9 respectively. The network that maps target lighting L
∗

to lighting features Z∗

s
is defined as two fully connected layers whose number of channels are 128, 27. The 27 dimensional

lighting feature is then repeated spatially so it has the same spatial resolution as Zf as illustrated in Figure 2.

5. Ablation Study

Figure 3 visually compares results of trained network using LI , LI + LGAN and LI + LGAN + Lf .
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Figure 2. Illustration of repeating lighting feature spatially.

6. Compared with Rendering Pipeline

We visually compare our method with our rendering pipeline in Figure 4.

7. Visual Results Compared with the State-of-the-art

In this section, we show some comparisons with [6], [7], [8] and [4]. Please note that [7], [8] and [4] are all reference

image based portrait relighting methods, i.e. their methods take a reference portrait image as input to represent the light

source, which is different from the proposed method and [6]. Table 2 in our paper has demonstrated that all these methods

cannot generate a relighted image as accurately as our method. Figure 5 is an extension of Figure 11 in the paper. Note that

for our proposed method and SfSNet [6], we use the target SH as the light source, whereas for Shih et al. [7], Shu et al. [8]

and Li et al. [4], we use the reference image as the light source.

8. Results on Non-frontal and Challenging Images

Figure 6 shows results of our method on non-frontal images. Figure 7 shows results of our method on some challenge

images. We notice that the proposed algorithm performs well on images with non-frontal face pose, occlusions and even

makeup.

9. Results on the High Resolution DPR dataset

We show results on 1024× 1024 images in Figure 8 and Figure 9.

3



(a) (b) (c) (d) (e) (f) (g)
Figure 3. (a) shows the input image, (b), (d) and (f) are images generated using LI , LI + LGAN and LI + LGAN + Lf respectively; (c),

(e) and (g) are the red rectangle region of (b), (d) and (f) respectively. Note the edge in the middle of the noise generated using LI .
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(a) (b) (c) (d) (e) (f)
Figure 4. (a) original image, (c) results of RI based rendering, (d) our results. (b), (d) and (f) show the red rectangle region of (a), (c) and

(d) respectively. Note that the proposed method removes the ghost effect and artificial highlights.
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(A)

(B)

(C)

reference/target SH input our SfSNet [6] Shih et al. [7] Shu et al. [8] Li et al. [4]
Figure 5. Qualitative comparison of the proposed method with state-of-the-art methods. First column in (A) (B) and (C): first row is the

reference image, second row is the target SH. Second column in (A), (B) and (C) show the input image, third to seventh column show the

results of our method, SfSNet[6], Shih et al. [7], Shu et al. [8] and Li et al. [4].6



Figure 6. Non-frontal examples. First row show the target SH lighting. The first column of the rest rows show the input image, the other

columns show relighted images by the proposed method under target SH lighting.
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Figure 7. Some challenging examples. First row show the target SH lighting. The first column of the rest rows show the input image, the

other columns show relighted images by the proposed method under target SH lighting. Our proposed method can deal with faces with

occlusions well.
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(A) (B) (C) (D) (E)
Figure 8. Results on DPR dataset. (A) is the input image, (B) and (D) are target SH lighting, (C) and (E) are relighted images by the

proposed method.
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(A) (B) (C) (D) (E)
Figure 9. Results on DPR dataset. (A) is the input image, (B) and (D) are target SH lighting, (C) and (E) are relighted images by the

proposed method.
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10. Limitations

Since we use Spherical Harmonics to represent lighting, our method cannot model cast shadows. This would require a

lighting representation that incorporates ray tracing. From the first row of Figure 10, we can see that the cast shadows caused

by the glasses do not change as the lighting changes. Another limitation of the proposed method is that for portrait images

with strong shadows, the generated results are affected by the shadows as shown in the second row of Figure 10. We believe

this is because the strong shadows will cause information loss which cannot be recovered by our proposed method.

(A) (B) (C) (D) (E)
Figure 10. Bad examples. (A) is the input image, (B) and (D) are target SH lighting, (C) and (E) are images relighted by the proposed

method.
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