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A. Supplementary Materials
A.1. Pseudocode for Line Vectorization

Algorithm 1 gives a more detailed description for line
vectorization. The algorithm takes the C-junction set VC

and T-junction set VT as the input and outputs a vectorized
wireframe (V,E). In the first stage (Lines 2-3), we find the
lines among C-junctions according to the line confidence
function. The procedure Prune-Lines greedily removes the
lines with the lowest confidence that either intersect with
other lines (Line 32) or are too close to other lines in term
of the polar angle (Line 35). In the second stage (Lines
4-25), we add the T-junctions into the wireframe. From
Lines 6-14, we find the T-junctions that are on the existing
wireframe. We first adjust the positions of those T-junctions
by projecting them onto the line (Line 9) and then add them
to the candidate T-junction set V′ (Line 10). Because the
degree of a T-junction is always one, we try to find the
connection with the highest confidence for those candidates
T-junctions (Lines 15-25). We repeat the this process until
V, V′, and E remain the same in the last iteration.

A.2. Line Assignments for Vanishing Points
In Equation (4), we need to find the set of lines Ai ⊆ E

corresponding to the vanishing point i. Mathematically, we
define the objective function

min
A

3∑
i

∑
(u,v)∈Ai

‖(u − V i) × (u − v)‖2 ,

where ‖(·) × (·)‖2 can be understood as the parallelogram
area formed by two vectors. Since each line in this equa-
tion is mutually independent, we can solve this optimization
problem by greedily assigning each line to the best vanishing
point i to minimize the objective function.

A.3. Sampled Failure Cases and Discussions
Figure 7 demonstrates some failure cases in our

SceneCity dataset. We found that our pipeline might not
work well on the scenes in which there are many lines and
junctions that are close to each other. This is because the
resolution of the output heat map is 128 × 128, so any de-
tail whose size is below two or three pixels might get lost
during the vectorization stage. Therefore, one of our future
work is to explore the possibility of using high-resolution
input and output images. There are also issues in the 3D
depth refinement stage. When the scene is complex, finding
the assignment Ai for each line can be hard, due to the er-
ror in the junction position and line direction. In addition,
the term contributed by erroneous lines in Equation (4) can
make the depth of some junctions inaccurate. Such problem
might potentially be alleviated by increasing the resolution
of the input and output images, using a more data-driven

Algorithm 1 Edge Vectorization Algorithm
Require: Candidate C-junction set VC , T-junction set VT .
Require: Hyper-parameters ηc and η◦.
Ensure: Wireframe (V,E).
1: procedure Vectorize(VC , VT )
2: V← VC

3: E← Prune-Lines({(u, v)|u, v ∈ V, c(u, v) > ηc})
4: V′← �
5: while V, V′, or E change in the last iteration do
6: for all w ∈ VT do
7: for all e = (u, v) ∈ E do
8: if w is near e then
9: project w to the line e
10: V′← V′ ∪ {w}
11: break
12: end if
13: end for
14: end for
15: for all u ∈ V′ do
16: v ← argmaxv∈V∪V′ c(u, v)
17: if c(u, v) ≥ ηc then
18: V′← V′\{u}
19: V← V ∪ {u}
20: E← E ∪ {(u, v)}
21: end if
22: end for
23: VT ← VT \(V ∪ V′)
24: end while
25: E← Prune-Lines(E)
26: return (V,E)
27: end procedure
28: procedure Prune-Lines(E)
29: sort E w.r.t confidence values in descending order
30: E′← �
31: for all e ∈ E do
32: if ∃e′ ∈ E′ : e intersects with e′ then
33: continue
34: end if
35: if ∃e′ ∈ E′ : e′ ∩ e , � and ∠(e, e′) < η◦ then
36: continue
37: end if
38: E′← E′ ∪ {e}
39: end for
40: return E′
41: end procedure
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Ground truth Inferred 3D Novel views

Figure 7: Failure cases on the SceneCity dataset.

method, designing a better objective function, or employing
a RANSIC approach in those two stages.

A.4. Network Comparison
In this section, we discuss the difference between our

network and the one in [12]. Our network is similar as their
line detection network with the difference in the following
perspectives:

1. In each hourglass module, they use two consecutive
residual modules (RM) at each spatial resolution while
we only use one RM, resulting less parameters in each
hourglass module. Note that our design is the same
as the original hourglass paper [23], which enables us
to use more RM in each hourglass module and reduce
the computational complexity since more computation
is allocated in lower resolution stages. We adopt such
design since we find using two RM gives negligible
gains to the performance compared with only one.

2. We apply the intermediate supervision to the stacked
hourglass network. For each hourglass modules, the
loss term associated with the predicted heat maps is
added to the final loss. [12] does not such intermediate
supervision in their method. We find such intermedi-
ate supervision vital in both our synthetic dataset as
well as their 2D dataset in terms of both accuracy and
robustness.

3. We observe that using 2 stacked hourglass modules
gives a similar performance as the 5 stacked hourglass
modules in [12]. On the other hand, using 2 stacks
consumes less memory, which gives us more design
flexibility. For example, we are able to utilize a larger
batch size to make the gradients more stable.
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