
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICCV
#1585

ICCV
#1585

ICCV 2019 Submission #1585. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A. Supplementary Materials
A.1. Pseudocode for Line Vectorization

Algorithm 1 gives a more detailed description for line
vectorization. The algorithm takes the C-junction set VC

and T-junction set VT as the input and outputs a vectorized
wireframe (V,E). In the first stage (Lines 2-3), we find the
lines among C-junctions according to the line confidence
function. The procedure Prune-Lines greedily removes the
lines with the lowest confidence that either intersect with
other lines (Line 32) or are too close to other lines in term
of the polar angle (Line 35). In the second stage (Lines
4-25), we add the T-junctions into the wireframe. From
Lines 6-14, we find the T-junctions that are on the existing
wireframe. We first adjust the positions of those T-junctions
by projecting them onto the line (Line 9) and then add them
to the candidate T-junction set V′ (Line 10). Because the
degree of a T-junction is always one, we try to find the
connection with the highest confidence for those candidates
T-junctions (Lines 15-25). We repeat the this process until
V, V′, and E remain the same in the last iteration.

A.2. Line Assignments for Vanishing Points
In Equation (4), we need to find the set of lines Ai ⊆ E

corresponding to the vanishing point i. Mathematically, we
define the objective function

min
A

3∑
i

∑
(u,v)∈Ai

‖(u − V i) × (u − v)‖2 ,

where ‖(·) × (·)‖2 can be understood as the parallelogram
area formed by two vectors. Since each line in this equa-
tion is mutually independent, we can solve this optimization
problem by greedily assigning each line to the best vanishing
point i to minimize the objective function.

A.3. Sampled Failure Cases and Discussions
Figure 7 demonstrates some failure cases in our

SceneCity dataset. We found that our pipeline might not
work well on the scenes in which there are many lines and
junctions that are close to each other. This is because the
resolution of the output heat map is 128 × 128, so any de-
tail whose size is below two or three pixels might get lost
during the vectorization stage. Therefore, one of our future
work is to explore the possibility of using high-resolution
input and output images. There are also issues in the 3D
depth refinement stage. When the scene is complex, finding
the assignment Ai for each line can be hard, due to the er-
ror in the junction position and line direction. In addition,
the term contributed by erroneous lines in Equation (4) can
make the depth of some junctions inaccurate. Such problem
might potentially be alleviated by increasing the resolution
of the input and output images, using a more data-driven

Algorithm 1 Edge Vectorization Algorithm
Require: Candidate C-junction set VC , T-junction set VT .
Require: Hyper-parameters ηc and η◦.
Ensure: Wireframe (V,E).
1: procedure Vectorize(VC , VT )
2: V← VC

3: E← Prune-Lines({(u, v)|u, v ∈ V, c(u, v) > ηc})
4: V′← �
5: while V, V′, or E change in the last iteration do
6: for all w ∈ VT do
7: for all e = (u, v) ∈ E do
8: if w is near e then
9: project w to the line e
10: V′← V′ ∪ {w}
11: break
12: end if
13: end for
14: end for
15: for all u ∈ V′ do
16: v ← argmaxv∈V∪V′ c(u, v)
17: if c(u, v) ≥ ηc then
18: V′← V′\{u}
19: V← V ∪ {u}
20: E← E ∪ {(u, v)}
21: end if
22: end for
23: VT ← VT \(V ∪ V′)
24: end while
25: E← Prune-Lines(E)
26: return (V,E)
27: end procedure
28: procedure Prune-Lines(E)
29: sort E w.r.t confidence values in descending order
30: E′← �
31: for all e ∈ E do
32: if ∃e′ ∈ E′ : e intersects with e′ then
33: continue
34: end if
35: if ∃e′ ∈ E′ : e′ ∩ e , � and ∠(e, e′) < η◦ then
36: continue
37: end if
38: E′← E′ ∪ {e}
39: end for
40: return E′
41: end procedure

10



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

ICCV
#1585

ICCV
#1585

ICCV 2019 Submission #1585. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Ground truth Inferred 3D Novel views

Figure 7: Failure cases on the SceneCity dataset.

method, designing a better objective function, or employing
a RANSIC approach in those two stages.

A.4. Network Comparison
In this section, we discuss the difference between our

network and the one in [12]. Our network is similar as their
line detection network with the difference in the following
perspectives:

1. In each hourglass module, they use two consecutive
residual modules (RM) at each spatial resolution while
we only use one RM, resulting less parameters in each
hourglass module. Note that our design is the same
as the original hourglass paper [23], which enables us
to use more RM in each hourglass module and reduce
the computational complexity since more computation
is allocated in lower resolution stages. We adopt such
design since we find using two RM gives negligible
gains to the performance compared with only one.

2. We apply the intermediate supervision to the stacked
hourglass network. For each hourglass modules, the
loss term associated with the predicted heat maps is
added to the final loss. [12] does not such intermediate
supervision in their method. We find such intermedi-
ate supervision vital in both our synthetic dataset as
well as their 2D dataset in terms of both accuracy and
robustness.

3. We observe that using 2 stacked hourglass modules
gives a similar performance as the 5 stacked hourglass
modules in [12]. On the other hand, using 2 stacks
consumes less memory, which gives us more design
flexibility. For example, we are able to utilize a larger
batch size to make the gradients more stable.

11


