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1. Cross-dataset generalization

In this section we provide additional information on the
single view pose estimation network used in the experiment
and other technical details. The datasets used in the experi-
ment show slight differences regarding the hand model def-
inition: Some provide a keypoint situated at the wrist while
others define a keypoint located on the palm instead. To al-
low a fair comparison, we exclude these keypoints, which
leaves 20 keypoints remaining for the evaluation. In the
subsequent sections we, first provide implementation de-
tails in 1.1, which includes hyperparameters used and the
network architecture. Second, we analyze the influence that
using a pretrained network has on the outcome of the exper-
iment in 1.2.

1.1. Implementation details

We chose our hyper parameters and architecture similar
to [4]. The network consists of an encoder decoder struc-
ture with skip connections. For brevity we define the build-
ing blocks Block0 (see Table 2) Block1 (see Table 3), Block2
(see Table 4), Block3 (see Table 5) and Block4 (see Table 6).
Using these, the network is assembled according to Table 1.
All blocks have the same number of channels for all convo-
lutions throughout. An exception is Block4, which has 128
output channels for the first two and 42 for the last convolu-
tion. The number 42 arises from 21 keypoints we estimate
2D locations and depth for. Skip connections from Block1
to Block3 always branch off after the last convolution (id
3) of Block1 using the respective block that has the same
spatial resolution.

We train the network for 300 k iterations with a batch
size of 16. For optimization we use the Momentum solver
with an initial learning rate of 0.001 and momentum of 0.9.
Learning rate is lowered to 0.0001 after iteration 150 k.

id Name Dimensionality
Input image 128× 128× 3

1 Block0 128× 128× 64
2 Block1 64× 64× 128
3 Block1 32× 32× 128
4 Block1 16× 16× 128
5 Block1 8× 8× 128
6 Block1 4× 4× 128
7 Block1 2× 2× 128
8 Block2 4× 4× 256
9 Block3 8× 8× 128

10 Block3 16× 16× 128
11 Block3 32× 32× 128
12 Block3 64× 64× 128
13 Block3 128× 128× 128
14 Block4 128× 128× 42

Table 1: Our single view network architecture used for 3D
pose estimation in the cross-dataset generalization experi-
ment.

id Name Kernel Stride
1 Conv. + ReLU 3× 3 1
2 Avg. Pool 4× 4 1
3 Conv. + ReLU 3× 3 1
4 Avg. Pool 4× 4 1

Table 2: Block0.

1.2. Pretrained network

We provide an additional version of the proposed cross-
dataset generalization experiment, which shows the influ-
ence of using a pretrained network. For this purpose, we
use a ImageNet pretrained ResNet50 backbone, which we
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id Name Kernel Stride
1 Conv. + ReLU 3× 3 1
2 Avg. Pool 4× 4 2
3 Conv. + ReLU 3× 3 1

Table 3: Block1.

id Name Kernel Stride
1 Conv. + ReLU 3× 3 1
2 Upconv. 4× 4 2

Table 4: Block2.

id Name Kernel Stride
1 Concat(Input, Block1 skip ) - -
2 Conv. + ReLU 1× 1 1
3 Conv. + ReLU 3× 3 1
4 Upconv. 4× 4 2

Table 5: Block3.

id Name Kernel Stride
1 Conv. + ReLU 7× 7 1
2 Conv. + ReLU 7× 7 1
3 Conv. 7× 7 1

Table 6: Block4.

train to learn a direct mapping from images to normalized
3D pose. From the original ResNet50 we use the average
pooled final features and process them using 2 fully con-
nected layers with 2048 neurons each using ReLU activa-
tions and a final linear fully connected layer outputting the
63 parameters (= 21× 3D coordinates). Hyperparameters
are identical to 1.1, except for the use of ADAM solver and
an initial learning rate of 10−5, which is lowered to 10−6

after iteration 150 k. The results are presented in Table 7,
which shows that the average ranks are mostly unchanged
compared to the results reported in the main paper. We
witness a tendency of lower performance on the respective
evaluation set, but better generalization to other datasets.

2. MVNet
2.1. Training loss

We experimented with different losses for training
MVNet and witnessed large differences regarding their ap-
plicability to our problem. In addition to the loss described
in the main paper, which we refer to as Scorevolume loss,
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Figure 1: Shown is the average predictions 3D error of
MVNet on a given dataset over the sparsification rate. When
moving along the x-axis from left to right the remaining
evaluation set gets smaller and the y-axis reports the error
upon the remaining dataset. For each approach the resulting
curves are shown, when the prediction score is used as solid
lines, and when the ground truth error is used as dashed
lines, which we refer to as oracle. A good score yields a line
that stays close to the oracle line, which shows that Scorev-
olume trained networks learn much more meaningful scores
than Softargmax.

we used the Softargmax loss formulation [4]. As reported in
literature, we find that Softargmax achieves better results for
keypoint estimation, but that the respective score for each
prediction is less meaningful as a predictor of the expected
error.

In both cases we define the score c of an prediction that
MVNet makes as reported in the main paper and use the
latent heat map of the Softargmax loss to calculate c. To
analyze the relation between prediction score c and the ex-
pected error of the final prediction, we follow the method-
logy described in detail in [3], and report sparsification
curves in Fig. 1. This plot analyses how the prediction error
on a given dataset evolves by gradually removing uncertain
predictions, as measured by the prediction score c. If the
prediction score is a good proxy for the prediction error the
curves should monotonically decrease to zero, because pre-
dictions with low score should identify samples with high
error. The oracle curve shows the ideal curve for a respec-
tive loss and is created by accessing the ground truth error
instead of using the prediction score, i.e. one is always re-
moving the predictions with the largest error.

Fig. 1 shows that score of the Scorevolume loss shows
much better behavior, because it stays fairly close to its
oracle line. Which is in contrast to the Softargmax loss.
We deduct from this experiment, that the scores that arise
when training on a Scorevolume represent a more meaning-



train
eval

STB RHD GAN PAN LSMV FPA HO3D Ours Average
Rank

STB 0.687 0.247 0.151 0.263 0.220 0.138 0.207 0.244 5.6
RHD 0.480 0.697 0.200 0.353 0.490 0.156 0.417 0.403 2.9
GAN 0.184 0.198 0.624 0.217 0.229 0.182 0.188 0.233 5.8
PAN 0.447 0.367 0.221 0.632 0.454 0.205 0.264 0.345 3.0

LSMV 0.242 0.286 0.199 0.226 0.640 0.162 0.283 0.307 4.4
FPA 0.186 0.178 0.156 0.206 0.197 0.705 0.162 0.239 6.6

HO3D 0.254 0.311 0.198 0.206 0.338 0.148 - 0.313 5.4
Ours 0.520 0.399 0.205 0.395 0.509 0.208 0.416 0.523 2.0

Table 7: This table shows, cross-dataset generalization measured as area under the curve (AUC) of percentage of correct
keypoints following [9]. In contrast to the table reported in the main paper an ImageNet pretrained ResNet50 network is used
for direct regression of normalized 3D pose. Entries are marked if they rank: first, second or third for each dataset.

ful measure of the algorithms uncertainty and therefore it
should be used for our labeling procedure.

2.2. Implementation details

The part of network for 2D feature extraction is initial-
ized with the network presented by Simon et al. [6]. We use
input images of size 224×224, that show hand cropped im-
ages. For hand cropping we use a MobileNet architecture
[2] that is trained on Egohands [1] and finetuned on a small,
manually labeled, subset of our data. From the 2D CNN we
extract the feature encoding fi of dimension 28× 28× 128
after 12 convolutional layers, which is unprojected into a
64 × 64 × 64 × 128 voxel grid Fi of size 0.4 meters. The
voxel grid is centered at a 3D point hypothesis that is cal-
culated from triangulating the detected hand bounding box
centers we previously used for image cropping.

For joining the unprojected information from all cameras
we average Fi over all views i and use a U-Net [5] like
encoder-decoder architecture in 3D. We train the network
for 100 k training steps using ADAM solver. Batch size is 8
for the 2D CNNs and 1 for the 3D CNN. Scorevolume loss
is used with ground truth Gaussian targets having standard
deviation of 2 voxel units.

3. Extended Evaluation of iterative procedure
In Fig. 2, we show how the 3D keypoint estimation ac-

curacy of MVNet evolves over iterations. For comparison,
we also shown how MVNet performs when trained on the
Panoptic (PAN) dataset alone. While this gives insufficient
performance, joint training on PAN and our dataset yields
a large gain in performance in the first iteration and every
other iteration provides further improvement.

4. Image Compositing
Here we study different methods for post processing our

recorded images in order to improve generalization of com-
posite images. Green screen indicates that images are used
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Figure 2: We show performance measured as 3D PCK of
MVNet over different iterations of our procedure. It shows
that training MVNet only on the Panoptic dataset is not suf-
ficient to generalize to our data an that each iteration im-
proves performance. In brackets the 3D AUC is reported.

as is i.e. no additional processing step was used. Cut&Paste
refers to blending the original image with a randomly sam-
pled new background image using the foreground segmen-
tation mask as blending alpha channel. Harmonization is a
deep network based approach presented by Tsai et al. [7],
which should improve network performance on composite
images. Additionally, we experimented with the deep image
colorization approach by Zhang et al. [8]. For this process-
ing step we convert the composite image of the Cut&Paste
method into a grayscale image and input it in the coloriza-
tion method. Here we have the options Auto, in which
the network hallucinates all colors and Sample where we
provide the network with the actual colors in 20 randomly
chosen sample points on each foreground and background.
Examples of images these approaches yield are shown in
Fig. 4. Table 8 reports results for the network described in
1.1 and Table 9 shows results when the pretrained baseline



is used instead. The two tables show, that post process-
ing methods are more important when networks are trained
from scratch. In this case, Table 8 shows that using each
of the processing options yields roughly the same gain in
performance and using all options jointly performs best.
This option is chosen for the respective experiments in the
main paper. When a pretrained network is used Table 9 re-
ports already good results, when the network is only trained
on green screen images. Interestingly, in this scenario the
more elaborate post processing methods yield only a minor
gain compared to the Cut&Paste strategy. We hypothesize
these results are related to a significant level of robustness
the pretrained weights possess. Please note that we can’t
use these algorithms in a similar manner for datasets that
don’t provide segmentation masks of the foreground object.
Only RHD provides segmentation masks, which is why we
show the influence the discussed processing methods have
on its generalization. Table 10 shows that the discussed
methods don’t improve performance for RHD trained net-
works the same way. The results indicate that these strate-
gies should not been seen as general data augmentation,
but rather specific processing steps to alleviate the problem
of green screen color bleeding we witness on our training
dataset.

method
eval

RHD Ours

Green Screen 0.246 0.440
Cut&Paste 0.350 0.508
Harmonization [7] 0.443 0.628
Colorization Auto [8] 0.458 0.634
Colorization Sample [8] 0.494 0.643
Joint 0.518 0.678

Table 8: Network architecture as used in the main paper.
When training networks from scratch, it is important to
introduce background variation by inserting random back-
grounds into the green screen recordings. Using post pro-
cessing algorithms improves generalization.

5. FreiHAND details
For the dataset we recorded 32 people and asked them

to perform actions in front of the cameras. The set of non
object actions included: signs from the american sign lan-
guage, counting, move their fingers to their kinematic lim-
its. The set of objects contains different types of workshop
tools like drills, wrenches, screwdrivers or hammers. Dif-
ferent types of kitchen supply were involved as well, f.e.
chopsticks, cutlery, bottles or BBQ tongs. These objects
were either placed into the subjects hand from the beginning
of the recording or hang into our setup and we recorded the

method
eval

RHD Ours

Green Screen 0.338 0.436
Cut&Paste 0.386 0.468
Harmonization [7] 0.416 0.513
Colorization Auto [8] 0.368 0.478
Colorization Sample [8] 0.381 0.496
Joint 0.399 0.523

Table 9: Instead of the network architecture used in the
main paper, we use a ResNet50 Baseline as described in 1.2.
When the network is initialized with weights that already
show a certain level of robustness the importance of back-
ground removal and recombination with post processing is
less pronounced, but still improves results substantially.

method
eval

RHD Ours

Original 0.767 0.508
Harmonization [7] 0.723 0.517
Colorization Auto [8] 0.726 0.472
Colorization Sample [8] 0.748 0.501
Joint 0.756 0.514

Table 10: Network architecture as used in the main paper,
but instead of training on our dataset we train on RHD and
apply the same post processing methods to it. We chose
RHD as reference because it is the only dataset that also pro-
vides foreground segmentation masks, which are needed for
the processing methods. The table shows that none of them
yields clear improvements over using the original unaltered
RHD dataset for training.

process of grabbing the object.
Actions that contain interaction with objects include

the following items: Hammer, screwdrive, drill, scissors,
tweezers, desoldering pump, stapler, wrench, chopsticks,
caliper, power plug, pen, spoon, fork, knive, remote con-
trol, cream tube, coffee cup, spray can, glue pistol, frisbee,
leather cover, cardboard box, multi tool and different types
of spheres (f. e. apples, oranges, styrofoam). The action
were selected such that all major grasp types were covered
including power and precision grasps or spheres, cylinders,
cubes and disks as well as more specialized object specific
grasps.

These recordings form the basis we run our iterative la-
beling procedure on, that created the dataset presented in the
main paper. Some examples of it are shown in Fig. 5. Fig. 3
shows one dataset sample containing 8 images recorded at
a unique time step from the 8 different cameras involved
in our capture setup. One can see that the cameras capture



Part Samples
with object

Samples
w/o object male female total

Training (green screen) 2580 1490 2462 1608 4070
Evaluation (total) 339 156 290 205 495
Evaluation (plane space office) 119 40 63 96 159
Evaluation (outdoor) 114 47 88 73 161
Evaluation (meeting room) 106 69 139 36 175

Table 11: Distribution of labeled samples in our dataset across
different aspects.

Ethnicity Training Evaluation
Caucasian (NA, Europe, ...) 14 11
South Asian (India, Pakistan, ...) 3 2
East Asia (China, Vietnam, ...) 2 0
Male subjects 15 6
Female subjects 9 5

Table 12: Gender and ethnicity distribution of recorded subjects
in the dataset.

a broad spectrum of viewpoints around the hand and how
for different cameras different fingers are occluded. Our
datasets shape annotation is overlayed in half of the views.

Furthermore, we provide more qualitative examples of
our single view shape estimating network in Fig. 6.

Distributions across genders and ethnicity’s are reported
in Table 12, whereas Table 11 shows the distribution of la-
beled samples across gender and object interaction.

The dataset was recorded using the following hardware:
Two Basler acA800-510uc and six Basler acA1300-200uc
color cameras that were hardware triggered using the GPIO
module by numato. The cameras were equipped with fixed
lenses with either 4mm or 6mm focal length. The record-
ing setup is approximately forming a cube of edge length
1m with one of the color cameras being located in each of
the corners. The subjects then reached inside the cubicle
through one of the cubes’ faces, which approximately put
their hand at an equal distance to all the cameras. When
recording for the evaluation split, we used ambient lighting.
To improve lighting during green screen recording there
were 4 powerful LED lights as used during recording with a
video camcorder. These allowed to vary in terms of lighting
power and light temperature during the recordings.
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Figure 3: Here we show one sample of our dataset, which consists of 8 images that are recorded at the same time instance.
We overlay the shape label found with our method in some of the images.

Figure 4: Visualizations of our explored post processing options on the same sample. From left to right: Original frame,
Cut&Paste, Harmonization [7], Colorization Auto [8], Colorization: Sample [8].

Figure 5: Examples from our proposed dataset showing images and hand shape annotations. It shows the final images that
are used for training of single view methods with the original background replaced and [7] applied for post processing.



Figure 6: More qualitative examples of predicted hand shapes that our single view network makes. Again, we don’t apply
any alignment of the predictions with respect to the ground truth, which explains minor miss alignment whereas the hand
articulation is captured correctly.


