
7. Appendix

7.1. Continuation of Universality of PFs and GFMN

Convergence

We summarize here the main definitions and theorems
from [28] regarding universality of kernels and feature
maps.

Universal Kernels. The following defines a universal ker-
nel

Definition 1 (Universal Kernel). Given a kernel K defined
on X ⇥ X . Let Z be any compact subset of X . Define the
space of kernel sections:

K(Z) = span{Ky, y 2 Z},

where Ky : X ! R, Ky(x) = K(x, y). Let C(Z) be the
space of all continuous real valued functions defined on Z .
A kernel is said universal if for any choice of Z (compact
subset of X) K(Z) is dense in C(Z).

In other words a kernel is universal if C(Z) = K(Z).
Meaning if any continuous function can be expressed in the
span of Ky .

Universal Feature Maps.We turn now for kernels defined
by feature maps and how to characterize their universality.
Consider a continuous feature map � : X ! W , where
(W, h, iW) is a Hilbert space; the kernel K has the follow-
ing form:

K(x, y) = h�(x),�(y)iW . (6)

Let Y be an orthonormal basis of W define the following
continuous function Fy 2 C(Z) defined at x 2 Z:

Fy(x) = h�(x), yiW ,

and let:
�(Y) = span{Fy, y 2 Y}

Definition 2 (Universal feature Map). A feature map is uni-
versal if �(Y) is dense in C(Z), for all Z compact subsets
of X .i.e A feature map is universal if �(Y) = C(Z).

The following Theorem shows the relation between uni-
versality of a kernel defined by feature map and the univer-
sality of the feature map:

Theorem 2 ([28], Thm 4, Relation between K(Z) and
�(Y)). For kernel defined by feature maps in (6) we have
K(Z) = �(Y). A kernel of form (6) is universal if and only
if its feature map is universal.

Hence the following Theorem 7 from [28]:

Theorem 3 ([28]). Let S = {�j , j 2 I}, where I is a count-
able set and �j : X ! R continuous function. Define the
following kernel

K(x, y) =
X

j2I

�j(x)�j(y).

K is universal if and only if the set of features S is universal.

7.2. Discussion of AMA versus MA

As we already discussed the moving average of v of the
difference of features means

�t =
1

N

NX

i=1

E(xi)�
1

N

NX

i=1

E(G(zi, ✓t))

between real and generated data at each time step t in the
gradient descent up to time T , can be seen as a gradient
descent in an online setting on the following cost :

f
⇤ = min

v

TX

t=1

ft(v) =
TX

t=1

||v ��t||
2
2

Note that we are in the online setting since �t is only known
when ✓t of the generator is updated. The sequence vt gener-
ated by MA (moving average) and by AMA (ADAM mov-
ing average) is the SGD updates and ADAM updates re-
spectively applied to the cost function ft. Hence we can
bound the regret of the sequence {v

MA
t } and {v

AMA
t } using

known results on SGD and ADAM. Let d be the dimension
of the encoding E. For MA, using classic regret bounds for
gradient descents we obtain:

R
MA
T =

TX

t=1

||v
MA
t ��t||

2
2 � f

⇤
 O(

p

dT).

For AMA, using ADAM regrets bounds from (Reddi et al.,
2018). Let us define

R
AMA
T =

TX

t=1

||v
AMA
t ��t||

2
2 � f

⇤
.

We have:

R
AMA
T O(

p

T

dX

i=1

û
T, 12
i) + · · ·

O

0

@
dX

i=1

vuut
TX

t=1

(�t,i � vAMA
t,i)2

1

A+ C

where û are defined in the ADAM updates as moving av-
erages of second order moments of the gradients. The

regret bound of AMA is better than MA especially if
Pd

i=1 û
T, 12
i ⌧ d and

dX

i=1

vuut
TX

t=1

(�t,i � vAMA
t,i)2 ⌧

p

Td.

7.3. Mean Matching vs. Mean + Covariance Match-

ing in GFMN

In this Appendix, we present comparative results be-
tween GFMN with mean feature matching vs. GFMN with
mean + covariance feature matching. Using the first and
second moments to perform feature matching gives statisti-
cal advantage over using the first moment only. In Table 5,
we can see that for different feature extractors, performing
mean + covariance feature matching produces significantly
better results in terms of both IS and FID. Mroueh et al.
[31] have also demonstrated the advantages of using mean
+ covariance matching in the context of GANs.

7.4. Neural Network Architectures

In Tables 6 and 7, and Figure 6 we detail the neural net
architectures used in our experiments. In both DCGAN-like
generator and discriminator, an extra layer is added when
using images of size 64⇥64. In VGG19 architecture, after
each convolution, we apply batch normalization and ReLU.
The Resnet generator is used for CelebA128⇥128 experi-
ments and also for some experiments with CIFAR10 and
STL10. For these two last datasets, the Resnet generator
has 3 ResBlocks only, and the output size of the DENSE

layer is 4⇥ 4⇥ 512.

Figure 6: ResBlock

7.5. Pretraining of ImageNet Classifiers and Au-

toencoders

Both VGG19 and Resnet18 networks are trained with
SGD with fixed 10�1 learning rate, 0.9 momentum term,
and weight decay set to 5 ⇥ 10�4. We pick models with

best top-1 accuracy on the validation set over 100 epochs
of training; 29.14% for VGG19 (image size 32⇥32), and
39.63% for Resnet18 (image size 32⇥32). When training
the classifiers we use random cropping and random hori-
zontal flipping for data augmentation. When using VGG19
and Resnet18 as feature extractors in GFMN, we use fea-
tures from the output of each ReLU that follows a conv.
layer, for a total of 16 layers for VGG and 17 for Resnet18.

In our experiments with autoencoders (AE) we pre-
trained them using either mean squared error (MSE) or the
Laplacian pyramid loss [25, 4]. Let E and D be the en-
coder and the decoder networks with parameters � and ,
respectively.

min
�,

Epdata ||x�D(E(x;�);)||2

or the Laplacian pyramid loss [25]

Lap1(x, x
0) =

X

j

2�2j
|L

j(x)� L
j(x0)|1

where L
j(x) is the j-th level of the Laplacian pyramid rep-

resentation of x. The Laplacian pyramid loss provides bet-
ter signal for learning high frequencies of images and over-
come some of the blurriness issue known from using a sim-
ple MSE loss. [4] recently demonstrated that the Lap1 loss
produces better results than L2 loss for both autoencoders
and generative models.

7.6. Quantitative Evaluation Metrics

We evaluate our models using two quantitative metrics:
Inception Score (IS) [38] and Fréchet Inception Distance
(FID) [15]. We followed the same procedure used in pre-
vious work to calculate IS [38, 29, 35]. For each trained
generator, we calculate the IS for randomly generated 5000
images and repeat this procedure 10 times (for a total of 50K
generated images) and report the average and the standard
deviation of the IS.

We compute FID using two sample sizes of generated
images: 5K and 50K. In order to be consistent with pre-
vious works [29, 35] and be able to directly compare our
quantitative results with theirs, the FID is computed as fol-
lows:

• CIFAR10: the statistics for the real data are computed
using the 50K training images. This (real data) statis-
tics are used in the FID computation of both 5K and
50K samples of generated images. This is consistent
with both Miyato et al. [29] and Ravuri et al. [35] pro-
cedure to compute FID for CIFAR10 experiments.

• STL10: when using 5K generated images, the statistics
for the real data are computed using the set of 5K (la-
beled) training images. This is consistent with the FID

Table 5: CIFAR10 results for GFMN with Mean Feature Matching vs. GFMN with Mean + Covariance Feature Matching.

Feature Extractor Mean Matching Mean + Covar. Matching

IS FID (5K / 50K) IS FID (5K / 50K)
DCGAN (Encoder) 3.76 ± 0.04 96.5 / 92.5 4.51 ± 0.06 82.8 / 78.3
Resnet18 7.03 ± 0.11 35.7 / 31.1 7.92 ± 0.10 29.1 / 24.3
VGG19 7.42 ± 0.09 27.5 / 22.8 7.88 ± 0.08 25.5 / 20.8

Table 6: DCGAN like Generator

z 2 R100 ⇠ N (0, I)
DENSE ! 4⇥ 4⇥ 512

4⇥ 4, STRIDE=2 DECONV BN 256 RELU
4⇥ 4, STRIDE=2 DECONV BN 128 RELU
4⇥ 4, STRIDE=2 DECONV BN 64 RELU
3⇥ 3, STRIDE=1 CONV 3 BN 64 RELU
3⇥ 3, STRIDE=1 CONV 3 BN 64 RELU

3⇥ 3, STRIDE=1 CONV 3 TANH

Table 7: Resnet Generator

z 2 R100 ⇠ N (0, I)
DENSE, 4⇥ 4⇥ 2048
RESBLOCK UP 1024
RESBLOCK UP 512
RESBLOCK UP 256
RESBLOCK UP 128
RESBLOCK UP 164

BN, RELU, 3⇥ 3 CONV 3
TANH

computation of Miyato et al. [29]. When using 50K
generated images, the statistics for the real data are
computed using a set of 50K images randomly sam-
pled from the unlabeled STL10 dataset.

FID computation is repeated 3 times and the average is re-
ported. There is very small variance in the FID results.

7.7. Impact of the number of layers used for feature

extraction

Figure 7 shows generated images from generators that
were trained with a different number of layers employed to
feature matching. In all the results in Fig.7, the VGG19
network was used to perform feature extraction. We can
see a significant improvement in image quality when more
layers are used. Better results are achieved when 11 or more
layers are used, which corroborates the quantitative results
in Sec. 5.2.

7.8. Pretrained Generator/Discriminator in

WGAN-GP

The objective of the experiments presented in this sec-
tion is to evaluate if WGAN-GP can benefit from DCNN
classifiers pretrained on ImageNet. In the experiments, we
used a WGAN-GP architecture where: (1) the discrimina-
tor is a VGG19 or a Resnet18; (2) the discriminator is pre-
trained on ImageNet; (3) the generator is pretrained on CI-
FAR10 through autoencoding. Although we tried different
hyperparameter combinations, we were not able to success-
fully train WGAN-GP with VGG19 or Resnet18 discrimi-
nators. Indeed, the discriminator, being pretrained on Im-
ageNet, can quickly learn to distinguish between real and
fake images. This limits the reliability of the gradient in-
formation from the discriminator, which in turn renders the
training of a proper generator extremely challenging or even
impossible. This is a well-known issue with GAN training
[10] where the training of the generator and discriminator
must strike a balance. This phenomenon is covered in [2]
Section 3 (illustrated in their Figure 2) as one motivation for
work like Wassertein GANs. If a discriminator can distin-
guish perfectly between real and fake early on, the gener-
ator cannot learn properly and the min/max game becomes
unbalanced, having no good discriminator gradients for the
generator to learn from, producing degenerate models. Fig-
ure 8 shows some examples of images generated by the un-
successfully trained models.

7.9. Impact of Adam Moving Average for VGG19

feature extractor.

In this appendix, we present a comparison between the
simple moving average (MA) and ADAM moving average
(AMA) for the case where VGG19 ImageNet classifier is
used as a feature extractor. This experiment uses a mini-
batch size of 64. We can see in Fig. 9 that AMA has a very
positive effect in the quality of generated images. GFMN
trained with MA produces various images with some sort
of crossing line artifacts.

7.10. Visual Comparison between GFMN and

GMMN Generated Images.

Figure 10 shows a visual comparison between images
generated by GFMN (Figs. 10a and 10b) and Generative
Moment Matching Networks (GMMN) (Figs. 10c and 10d).

(a) 1 Layer (b) 3 Layers (c) 5 Layers

(d) 7 Layers (e) 9 Layers (f) 11 Layers

(g) 13 Layers (h) 15 Layers (i) 16 Layers

Figure 7: Generated images from GFMN trained with a different number of VGG19 layers for feature extraction.

GMMN [24] generated images were obtained from Li et al.
[22]. In this experiment, both GMMN and GFMN use a
DCGAN-like architecture in the generator. Images gener-
ated by GFMN have significantly better quality compared
to the ones generated by GMMN, which corroborates the
quantitative results in Sec. 5.4.

7.11. Autoencoder features vs. VGG19 features for

CelebA.

In this appendix, we present a comparison in image qual-
ity for autoencoder features vs. VGG19 features for the
CelebA dataset. We show results for both simple moving

Figure 8: Generated images by WGAN-GP with pretrained
VGG19 as a discriminator.

(a) MA (b) AMA

Figure 9: Generated images from GFMN trained with ei-
ther simple moving average (MA) or Adam moving aver-
age (AMA). VGG19 ImageNet classifier is used as feature
extractor.

average (MA) and ADAM moving average (AMA), for both
cases we use a minibatch size of 64. In Fig. 11, we show
generated images from GFMN trained with either VGG19
features (top row) or autoencoder (AE) features (bottom
row). We show images generated by GFMN models trained
with simple moving average (MA) and Adam moving av-
erage (AMA). We can note in the images that, although
VGG19 features are from a cross-domain classifier, they
lead to much better generation quality than AE features,
specially for the MA case.

(a) GFMN with VGG19 fea-
tures

(b) GFMN with Resnet18 fea-
tures

(c) GMMN - Matching on data
space

(d) GMMN+AE - Matching on
AE space

Figure 10: Generated images from GFMN (10a and 10b)
and GMMN (10c and 10d). GMMN images were obtained
from Li et al. [22].

(a) MA - VGG19 Features (b) AMA - VGG19 Features

(c) MA - AE Features (d) AMA - AE Features

Figure 11: Generated images from GFMN trained with ei-
ther VGG19 features (top row) or autoencoder (AE) fea-
tures (bottom row). We show images generated by GFMN
models trained with simple moving average (MA) and
Adam moving average (AMA). Although VGG19 features
are from a cross-domain classifier, they perform much bet-
ter than AE features, specially for the MA case.

