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Abstract—Artificial Intelligence promises to make the world
a safer place through automation. Automobiles can be steered
between traffic lines, spoken words can be translated into
textual commands, and wanted persons can be identified by law
enforcement. These tasks, once only surmountable by humans,
can now be performed by AIs with great speed and precision.
If these algorithms are negatively biased against certain groups,
what unforeseen harm may come to society?

This work focuses on the classification of gender and age,
a problem known to have systemic negative bias for certain
subgroups, to investigate the role of data augmentation in the
mitigation of such bias. A novel approach is proposed for
mitigating bias in a deep learning algorithm that estimates age
and gender. Settings for numerous data augmentation techniques
are learned through an evolutionary process that optimizes data
augmentation for specific subgroups. This approach proves to
reduce systemic bias while also generalizing models and obtaining
results that are state-of-the-art. The tools we use for determining
human biometrics must be fair and non-discriminatory. This
work examines not only bias, but also the insights gleaned from
successful and unsuccessful policies in certain scenarios.

I. INTRODUCTION

Deep learning has proven effective for a wide variety of

tasks which were formerly only surmountable by humans.

Deep neural networks (DNNs) have been applied to a plethora

of emerging technologies such as autonomous vehicles [1],

automated content moderation [2], and intrusion detection

systems [3]. Many applications of DNNs focus on being able

to understand human beings. Studies on sentiment analysis

[4], speech recognition [5], and natural language processing

[6] demonstrate promising strides towards that goal. Several

studies, including face recognition and verification, facial

expression analysis, and age and gender classification focus on

gleaning details from human faces. While some good results

have been reported for the use of deep convolutional neural

networks (DCNNs) in the task of age and gender estimation,

these works fail to acknowledge that the resultant models are

strongly overfit to the characteristics of the dataset. Neural

networks are data-driven models, so if the dataset used to

train a neural network is biased, then the resultant model

will also be biased. Torralba and Efros [7] identify three

types of dataset bias and examine cross-dataset results to

show how classifier performance can suffer as a result of

bias. This algorithmic bias may lead to outcomes that are

unfairly inaccurate and/or unrealistic. When considering age

and gender estimation, algorithmic bias may arise due to un-

derrepresented subgroups of a population. Certain subgroups

may simply be more challenging to identify, and, therefore,

would require more data or a more robust model in order

to achieve unbiased results. Data augmentation has proven to

generalize models while decreasing error by manufacturing

more data upon which a model can be trained [8] [9] [10] [11]

[12]. Hand-picked data augmentation strategies will sometimes

decrease error, but can also lead to an increase in error. Thus,

for this work, data augmentation policies are adopted from [13]

and an evolutionary algorithm is used to optimize the policies.

The application of data augmentation policies has been shown

to reduce error by a significant amount, but this can actually

worsen the bias ingrained in a model by decreasing error for

dataset majorities and increasing error for dataset minorities.

As such, in this approach, data augmentation policies are

evolved to specifically reduce bias. The bias-mitigating poli-

cies also result in a reduction of overall error while further

generalizing the model.

II. THE DATASETS

Three large face-image datasets were used for this study:

IMDB, Wiki, and MORPH-II (hereafter I,W, and M respec-

tively). The IMBD and Wiki datasets were assembled by Rothe

et al. in 2016 by crawling the IMDB and Wikipedia websites

and by crowd-sourcing some gender labels [14]. MORPH-

II is a collection of 55,134 mugshots assembled by Ricanek

et al. starting in 2006 [15]. A fourth dataset, the PPB (Pilot

Parliments Benchmark) dataset, is used as a final examination

of gender bias and is never included in the training validation

data. PPB is a collection of 1270 gender-labeled images that

was assembled by Buolamwini and Gebru in 2017 [16] for

the purposes of studying bias in gender classification models.

In [16], subjects from six different countries are labeled

with gender and a Fitzpatrick skin type1. IMDB, Wiki, and

MORPH-II are labeled with age and gender, and MORPH-

II is additionally labeled with race. The IMDB and Wiki

datasets were cleaned by using a face detector2 to locate

images where only one face was detected with a face score

of higher than 70%. The mean face width and height for

1Fitzpatrick skin types range from 1-6 where 1 is the fairest skin tone and
6 is the darkest.

2The face detector is a MobileNet-V2 model that was trained on the WIDER
FACE dataset [17]. It is available at https://github.com/yeephycho/tensorflow-
face-detection.
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MORPH-II was calculated to be width W = 113.48px and

height H = 130.86px using the corners of the bounding boxes

output by the face detector. All IMDB-Wiki faces were resized

to the MORPH-II mean using algorithm 1. Most MORPH-

II images have a width and height of 200x240, so all face

images are cropped down to this size. Hereafter, image width

iw = 200 and height ih = 240.

Algorithm 1: Crop face to mean face size

Result: A face-cropped image.
/* the bounding box corners below are returned by the

face detector */

x_min; y_min
x_max; y_max

center_x = x_min+x_max
2

center_y =
y_min+y_max

2
face_width = w = x_max - x_min
face_height = h = y_max - y_min
/* W and H are defined in section II */

if w
h

> H
W

then
resize_ratio = rr = W/w

else
resize_ratio = rr = H/h

end

center_x = rr * center_x
center_y = rr * center_y
/* resize the image in the x and y directions by

resize_ratio */

img.resize(rr, rr)
/* crop an image of size iw × ih around the center of

the face */

img.crop(center_x, center_y, (iw , ih))

A pretrained age and gender estimator from [18] was

used to identify potentially mislabeled images which were

then manually verified, and the images which were clearly

mislabeled were deleted. After the datasets were cleaned there

were 55,038 images included from MORPH-II, 35,169 from

Wiki, and 131,091 from IMDB. These three datasets S are

combined to produce a training set Str which comprises

50% of the dataset. The validation and test sets Sva and

Ste comprise 25% each. This scheme was chosen over the

usual 80/10/10 train/validate/test splits for two reasons. Firstly,

enough validation data needed to be present in order to create

the challenge set (section VI). Secondly, this study was not

designed to achieve the lowest error rates, but to show how

a limited amount of data can be augmented to mitigate the

effects of algorithm bias. Subgroups of the dataset can be

defined by the image labels. Every subset is a proper subset of

S and |S| = 221, 298. Let Gg be the set of all gender labeled

images where g ∈ {m, f}. Gm is all male labeled images and

Gf is all female labeled images. Not all dataset images are

gender labeled so |S− (Gm ∪Gf )| = 2, 812. Dd is the set of

all age labeled images where d ∈ {x ∈ Z|0 ≤ x < 10} and

ages for each decade are in the range [10d, 10(d + 1) − 1],
so D2 would consist of all 20-29 year-old subjects. The final

subset is Rr which is the set of all race labeled images where

r ∈ {b, w, o} (black, white, and other), and R ⊆ M . The

“other” label refers to all MORPH-II images not labeled black

or white so Ro = R − (Rb ∪ Rw). In addition to racial

bias, error is observed based upon face illumination. A mean

pixel value µ is calculated for the region of the face that

exists in 80% of the mean bounding box (WxH). This tighter

face crop helps to exclude background and hair. In set B,

or face brightness, B0 is the set of all of the darkest faces

with 0 ≤ µ < 85, B1 is the set of all moderate faces with

85 ≤ µ ≤ 170, and B2 is the set of all light faces with

170 < µ ≤ 255. See figure 1 for examples.

Fig. 1. Separating the dataset by face brightness illustrates the general trend
in accuracy by skin tone and also tests the model’s performance in poorly-lit
conditions.

III. THE MODEL

The Inception-ResNet-v2 DCNN model was chosen for

this project because of its strong ImageNet challenge [19]

performance and its relatively lightweight design. Inception-

ResNet-v2 combines Google’s Inception modules [8] with

Microsoft’s residual connections [20] to yield a 572 weight-

layer neural network. Its architecture consists of an input

stem which downsamples the image three times before using

several stacks of Inception A, B, and C modules, separated by

Reduction modules, to extract features before passing them

to the final global average pooling and softmax layers. With

an age output layer of 100 nodes, and a gender output layer

of 2 nodes, both models consist of about 55 million weights

and biases. Age models use MAE (mean absolute error) loss

while gender models use binary crossentropy loss. Binary

crossentropy was chosen for the gender model because training

set loss gets very low and a mislabeled or non-cisgender

image could disrupt the weights if a higher loss penalty is

enforced. All models were trained with the adadelta optimizer

[21] because it eliminated the need to tune the learning

rate and decay. All input is standardized to the training set

mean and standard deviation after data is augmented (in the

non-baseline models) but directly before being fed into the

network. DLDAE (dynamic label distribution age encoding)

[18] is used to encode and decode age labels, and age error is

reported as an MAE. As such, all age results are an average

error in years. Gender recognition (GR) is interpreted as a

binary score. If the gender network output layer node 0 has

a value of greater than .5, then it has rendered a prediction

of female, otherwise it has predicted male. Gender recognition

accuracy is reported in terms of binary accuracy and also as an

F1 score. The F1 score is the harmonic average of precision

and recall, so it is used to more accurately observe the change

in model bias. If tp is a true positive, tn is a true negative, fp

is a false positive, and fn is a false negative, then precision
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P = tp
tp+fp

and recall C = tp
tp+fn

. An F1 score is then

calculated via equation 1.

F1 = 2
PC

P + C
(1)

IV. BASELINE EXAMINATION

To identify sources of bias, separate models are trained on

Str ∩ D for age and Str ∩ G for gender. During training, a

randomly selected 1

4
of Sva is used as validation data to save

the top 5 models in terms of lowest validation loss. Training

is stopped when the model goes for 10 or more epochs with

no improvement. All results are reported only on Ste. Sva

results are ignored although they are very similar to Ste which

indicates a lack of validation set overfitting. The cardinality

of each subgroup in the test set is shown in table V. As can

be seen, some subgroups are severely underrepresented in the

dataset and this tends to be the reason for high error. There

is an inverse correlation of −0.3222 between Ste subgroup

count and age error. An age error standard deviation σ is also

calculated for each subgroup which shows that estimations

can vary wildly for underrepresented subgroups. The Ste

MAE overall was 4.62 years – 4.36 for males and 5.13 for

females. The results in tables I, II, and IV help identify the

greatest sources of age and gender error by subpopulation. In

almost every category the baseline models perform better on

men than women. This is to be expected since women only

comprise 33% of the dataset. Both age and gender models

have a difficult time on children and the elderly. The gender

recognition model tends to identify boys and young men as

women but the reverse is true for the elderly. Faces that are

more poorly illuminated are also not as easily identifiable

by both the age and gender models. The results for each

distinct dataset vary largely as well. The error for MORPH-

II is much lower than Wiki and IMDB for a few different

reasons. MORPH-II contains no children or elderly past the

age of 77, and it was not captured in the wild. Every image

is a frontal face image that was taken with camera flash in-

front of a neutral background. Wiki is the most challenging

dataset because of its lower image count and more frequent

facial obstructions. Wiki dataset images tend to be captured by

amateur photographers whereas most IMDB photos are taken

from movies or shows. It should be noted that the low counts

in some categories cause a high standard deviation for error

depending on the dataset split.

V. DATA AUGMENTATION

In this instance, the goal of mitigating bias in a trained AI

model involves targeting subgroups with high error. Ideally,

the error for these subgroups can be decreased without in-

creasing the error for other subgroups. A traditional approach

to reducing model bias in statistical classifiers like SVMs is

to partition the dataset into subgroups that are more balanced

[22]. Deep neural networks benefit greatly from being trained

on large datasets given their ability to keep generalizing as

more examples are seen. As such, a reduction in some of

the larger male populations such as D2 though D4 would not

TABLE I
BASELINE RESULTS BY DECADE

Ste ∩Gm Ste ∩Gf Ste ∩Gm Ste ∩Gf

Male Female Male Female

Age MAE | σ Age MAE | σ GR Error GR Error

D0 9.24 | 12.35 11.12 | 13.16 27.66% 5.80%
D1 3.85 | 6.14 6.43 | 8.35 5.51% 2.83%
D2 3.79 | 5.27 4.18 | 5.50 1.47% 1.50%
D3 3.70 | 4.98 4.03 | 5.24 1.24% 1.15%
D4 4.36 | 5.77 5.96 | 7.52 0.99% 1.67%
D5 5.50 | 7.19 8.26 | 10.40 0.75% 3.06%
D6 6.24 | 8.41 9.34 | 12.38 0.60% 4.14%
D7 8.53 | 10.54 12.77 | 15.62 0.73% 7.45%
D8 13.14 | 14.69 15.24 | 17.53 0.00% 4.35%
D9 16.94 | 18.17 26.02 | 29.78 0.00% 28.57%

TABLE II
BASELINE RESULTS BY RACE AND ILLUMINATION

Ste ∩Gm Ste ∩Gf Ste ∩Gm Ste ∩Gf

Male Female Male Female

Age MAE | σ Age MAE | σ GR Error GR Error

Rb 2.69 | 3.53 3.64 | 4.65 0.59% 1.14%
Rw 2.69 | 3.52 3.46 | 4.54 0.00% 1.52%
Ro 2.78 | 3.64 3.61 | 4.31 0.00% 0.00%
B0 5.58 | 7.41 6.10 | 8.16 2.57% 3.55%
B1 4.22 | 5.84 5.06 | 6.86 1.32% 1.52%
B2 3.27 | 4.69 4.16 | 5.62 0.95% 2.03%

result in more robust filters for women, but only less robust

filters for men. Since augmenting data has been identified as an

efficacious method for virtually increasing the size of a dataset,

it can be reasoned that data augmentation techniques could

be learned that most effectively augment data for the targeted

subgroups. For this experiment, the data augmentation policies

from [13] are adopted with some minor improvements. The

data augmentations policies in [13] consist of 5 subpolicies

with 2 image manipulation techniques per subpolicy. During

training, when an image is loaded, a subpolicy is randomly

chosen, and its image manipulation techniques are applied.

TABLE III
BASELINE RESULTS BY DATASET

Ste ∩Gm Ste ∩Gf Ste ∩Gm Ste ∩Gf

Male Female Male Female

Age MAE | σ Age MAE | σ GR Error GR Error

M 2.70 | 3.53 3.58 | 4.61 0.52% 0.96%
I 5.07 | 6.80 5.89 | 7.10 1.96% 1.25%
W 5.34 | 7.18 5.25 | 7.88 1.68% 5.99%

TABLE IV
BASELINE GENDER SCORES

Ste ∩Gm Ste ∩Gf

Male Female

Precision 98.55% 98.23%
Recall 99.10% 97.14%
F1 98.82% 97.68%
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TABLE V
TEST SET CARDINALITIES

Ste ∩Gm Ste ∩Gf

Male Female

Age | Gender Age | Gender

D0 45 | 47 74 | 69
D1 2443 | 2396 1380 | 1345
D2 8588 | 8630 6000 | 6123
D3 10370 | 10427 6029 | 5988
D4 8352 | 8289 3039 | 3002
D5 3926 | 3984 1048 | 980
D6 1701 | 1667 456 | 483
D7 706 | 686 176 | 188
D8 193 | 199 75 | 69
D9 31 | 27 10 | 14
Rb 9222 | 9276 1413 | 1401
Rw 1937 | 1929 653 | 656
Ro 452 | 430 31 | 36
B0 5495 | 4949 2310 | 1859
B1 28321 | 28127 14707 | 14630
B2 2539 | 3276 1270 | 1772
M 11611 | 11635 2097 | 2093
I 18218 | 18186 14569 | 14014
W 6526 | 6531 2304 | 2154

This work applies the evolutionary strategy from [23], rather

than the original reinforcement learning technique used in [13],

because aging evolution proved to more quickly arrive at near-

optimal solutions in a neural architecture search space. The

evolutionary algorithm also allows for changes in the number

of configurable parameters per data augmentation technique.

Rather than using evenly spaced settings for each technique

in the policy, this work chooses a set of reasonable defaults to

narrow the valid search space. The boundaries and increments

for these defaults are based on the results of [13] and also

our own prior experimentation with manipulating settings.

For example, posterizing image colors down to 3 bits would

eliminate most of the features from the image and would not

make for good training data, so the posterization technique

is limited to 4 bits or higher. The evolutionary algorithm, as

opposed to the reinforcement learning strategy, also allows

for the expansion and contraction of techniques within a sub-

policy. So while the data augmentation policy (DAP) always

maintains 5 subpolicies, the number of image manipulation

techniques applied by each subpolicy can change. This work

also introduces the concept of top-level policies. Some data

augmentation techniques have proven to be effective in many

other works, so they are considered with a learned probability

to be applied to each image after applying a subpolicy. The

top-level policies selected for this work are horizontal flipping,

mixup [24], cutout [12], and DLDAE. DLDAE is not a form

of data augmentation but it is implemented as a top-level

policy in order to optimize effective hyperparameters for it.

Similar to [13], every data augmentation technique, including

the top-level techniques, are applied with a probability p where

p ∈ {0.1x|x ∈ Z, 0 < x ≤ 10} except where otherwise speci-

fied in table VI. Some of the image manipulation techniques

from [13], such as pixel-wise inversion, were not considered

because, though they might yield valuable information when

considering images of house numbers, they would not improve

the quality of a face-image model. Two new data augmentation

techniques are introduced: an improvement to random crop

resampling, and a noise robustness technique called random

Gaussian tinting. If these techniques did not prove effective

then they would be eliminated from subpolicies during the

evolutionary process.

A. Random Crop Resampling

Fig. 2. Random cropping with a = 15.

Earlier in the deep learning revolution, image resampling

was commonly used as a form of data augmentation [10]

[8]. 12-crop resampling, for example, involved taking a crop

from each corner of an image, the middle of the image, and

resizing the full image down to the target size. Each of these

6 crops would then be flipped horizontally and then all 12

unique images would be fed into the network as training data.

Random crop resampling was devised as a way to handle

minor discrepancies in image center, scale, and translation

all at once. A slight change in a face’s scale should not

cause a vastly different age prediction. When random crop

resampling is applied, a black border of a width learned using

the reasonable defaults seen in table VI encompasses the

image. Then, the image is cropped with a random center down

to a size that is proportional to, but not necessarily equal to,

the input size of the network. Finally, the image is resized to

fit the network.

B. Random Gaussian Tinting

Fig. 3. Random Gaussian Tinting with a = 30 and b = 5.

In addition to random crop resampling, random Gaussian

tinting is introduced as a method of increasing model robust-

ness. A small amount of noise on an image should not greatly

effect the output of a network; nor should a slight variation

in the tint of the image. Random Gaussian tinting works by

choosing a subset of the R, G, and B channels, and adding

or subtracting a layer of Gaussian noise from those channels.

The mean of the Gaussian distribution from which noise is

drawn may be shifted by its learned a value, and the sampled

noise will have a standard deviation of b (see table VI). For

example, if a = 50 and b = 5, then the average color channel
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Algorithm 2: Random Crop Resampling

Result: A randomly cropped image.
def randomly_crop(img, border_width):

img.add_border(border_width, color=black)
/* randomly choose a top-left corner for the crop

that will cause it to be larger than or equal

to the target size */

x_min = randint(0, border_width * 2)
y_min = randint(0, border_width * 2)
/* ratios to iw and ih of potential crop size from

the top-left corner */

remaining_w_ratio = wr =
(iw+border_width∗2)−x_min

iw

remaining_h_ratio = hr =
(ih+border_width∗2)−y_min

ih
width_is_min = wr < hr ? true : false
if width_is_min then

crop_w = iw + randint(0, iw + border_width * 2 - x_min)

crop_h = crop_w *
ih
iw

else
crop_h = ih + randint(0, ih + border_width * 2 - y_min)

crop_w = crop_h * iw
ih

end

x_max = crop_w + x_min; y_max = crop_h + y_min
img.crop(x_min, y_min, x_max, y_max)
img.resize(iw , ih)
return img

shift for the selected channel will be ±50px and the noise

standard deviation will be 5px. In this way, if the blue and

green channels are selected to be modified, and the sampled

noise is added to both layers, then the resultant image will

have a teal tint to it and will appear to be of slightly lower

quality due to the noise.

VI. THE CHALLENGE SET

The results of the baseline tests are used to partition a

challenge set that contains subgroups that are high in error.

As noted earlier, there is a clear gender bias in the baseline

models. Children and the elderly tend to be particularly

difficult to identify in terms of age and gender, and darker faces

also pose a challenge. As such, the challenge set is comprised

of validation set images that fit these difficult categories. Only

images from Sva are used. During the evolutionary process,

the challenge set is used as validation data to evaluate the

fitness of the model that’s currently being trained. This forces

the algorithm to learn policies that most effectively reduce

error specifically for the groups that make up the challenge

set. These groups can be seen in table VII. The challenge

set contains a total of 5,323 images. 79.8% of the selected

images are female. Although the error for males aged 60-

79 is relatively high, only 1

3
of these images are included in

the challenge set and they are randomly drawn for each DAP

permutation that is tested to help prevent overfitting.

VII. EVOLVING DAPS

The first phase of the evolutionary process involves generat-

ing and evaluating a starting population of randomly initialized

data augmentation policies. For these policies, between one

and three image manipulation techniques are chosen for each

subpolicy, and every technique is initialized with settings

that are randomly chosen from its reasonable defaults (table

VI). Inception-ResNet-v2 is trained for age estimation for 80

epochs on 11,000 images that are randomly chosen from Str.

The reduced training set size allows models to be trained at a

rate of roughly 25 per day using four Tesla V100 video cards.

Only age estimation is targeted for bias reduction because it

has a larger output vector and is a more challenging problem

than gender recognition. The policies learned for gender

recognition would probably not transfer well to age estimation

because they would allow for stronger data augmentation

policies that would make it difficult to recognize age. Each

epoch, images are loaded and one subpolicy is applied to

each image along with the top-level policies. The challenge

set is used as validation data in order to record the lowest

loss achieved during training. The validation loss is the fitness

score that is used by the evolutionary algorithm to determine

which candidate should be mutated. Aging evolution is used

as described in [23] which involves recording a population

and history of DAPs and their fitness scores. The population

has a fixed size of 50. During the evolutionary process, 1

3

of the population is drawn, and the most fit candidate is

chosen to be mutated and evaluated. Three different mutation

types are used. The first is a setting mutation where one

of the settings for one technique is randomly redrawn from

its reasonable defaults. The second is a technique mutation

where one technique is chosen to be replaced by a new

randomly initialized technique. The third is a size mutation

where the number of techniques per subpolicy is increased

or decreased. If the subpolicy size is decreased, one of its

techniques are simply deleted. If the subpolicy size is in-

creased, a new technique is randomly initialized and appended

to the subpolicy. The top-level policies are included only in

the settings mutation. The average, minimum, and maximum

validation losses of the starting population are 0.0141, 0.0122,

and 0.0146 respectively. These numbers for the final popula-

tion are 0.0092, 0.0086, and 0.0103 which shows a marked

decrease in error through evolution. The best discovered policy

is illustrated in figure 4. The most commonly chosen data

augmentation techniques were random rotation and random

Gauss. Random rotation even monopolized an entire subpolicy

so, in retrospect, it should probably become a top-level policy.

Every data augmentation technique is used at least once which

indicates that a wider breadth of techniques is optimal for

generalizing models. The bounds on the technique settings

are relatively similar for techniques that are chosen more than

once. The settings tend to apply mild image manipulations

indicating that stronger manipulations make the data unusable.

Most subpolicies grew larger in size which rapidly increases

the number of potential images that could be generated by a

policy.

VIII. RESULTS

Final models were trained for age and gender using the top

five learned augmentation policies. For the final models, while

images are being loaded, one of the top five DAPs is chosen

for each image. As shown in [13], using more than five DAPs

has little further effect on the performance of the model. Figure
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TABLE VI
DATA AUGMENTATION TECHNIQUES

Technique Reasonable Defaults Description

Color a ∈ {.3, .5, .7, .9, 1.1, 1.3, 1.5, 1.7},
b ∈ {.3, .5, .7, .9, 1.1, 1.3, 1.5, 1.7}

Adjust the color balance of the image by a randomly chosen amount between a
and b.

Contrast a ∈ {.3, .5, .7, .9, 1.1, 1.3, 1.5, 1.7},
b ∈ {.3, .5, .7, .9, 1.1, 1.3, 1.5, 1.7}

Adjust the contrast of the image by a randomly chosen amount between a and b.

Equalization - Equalize the histogram of the image.
Posterization a ∈ {4, 5, 6, 7} Reduce each pixel value to a bits.
Random Cropping a ∈ {5, 10, 15, 20, 30, 40, 50} See paragraph V-A.
Random Gaussian Tinting a ∈ {10, 20, 30, 40, 50, 60, 70}, b ∈

{2, 5, 10, 15, 20, 25}
See paragraph V-B.

Random Rotation a ∈ {5, 10, 15, 20, 25, 30, 35} Rotate the image by a number of degrees between a and −a.
Sharpening/Blurring a ∈ {.3, .5, .7, .9, 1.1, 1.3, 1.5, 1.7},

b ∈ {.3, .5, .7, .9, 1.1, 1.3, 1.5, 1.7}
Sharpen or blur the image by an randomly chosen amount between a and b. Image
is sharpened if the value is greater than 1 or blurred if the value is less than 1.

Solarization a ∈ {192, 208, 224, 240} Invert the pixel values that are higher than a plus a random integer between 15
and -15.

Cutout p ∈ {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1},
a ∈ {.1, .2, .3}, b ∈ {.3, .4, .5}

Draw a gray rectangle on the image whose area covers a percentage of the image
between a and b.

DLDAE p ∈ {1}, a ∈ {2, 2.5, 3, 3.5, 4, 4.5},
b ∈ {5, 5.5, 6, 6.5, 7, 7.5}

Encode age labels with α values between a and b. See [18].

Horizontal Flipping p ∈ {0, .1, .2, .3, .4, .5} Flip the image about the y axis.
Mixup p ∈ {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1},

a ∈ {.1, .15, .2, .25, .3, .35, .4}
Combine two images and their labels. See [24].

Fig. 4. This figure represents a data augmentation policy proposed by this work. The top policy learned during evolution is depicted here.

TABLE VII
THE CHALLENGE SET

Subgroup Count

Gm ∩ Gf ∩ D0 114
Gf ∩ (D1 ∪ D5) 2345
Gf ∩ (D6 ∪ D7) 625
1
3

Gm ∩ (D6 ∪ D7) 769

(Gm ∩ Gf) ∩ (D8 ∪ D9) 329
(Gf∩Rb)−(Gf∪D0∪D1∪D5∪D6∪D7∪D8∪D9) 1141

Total 5323

5 provides some examples of what training images look like

before they are standardized and then fed into the network.

The results in tables VIII, IX, and X show that age error is

reduced in every single subgroup except for D3 males and

females, and females in the wiki dataset. Age estimation error

decreased more for Rw than it did for Rb suggesting that it is

more challenging to recognize the age of black people. This

correlates with the face brightness results which indicate that

darker faces are much more challenging to recognize even

though there is more data available for them than for the light

faces. In fact, although B1 is by far the most populous face
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Fig. 5. A random sample of training images with the top 5 data augmentation
policies applied.

brightness subgroup, results are best for B2 which is the least

populous subgroup. Overall, MAE went from 4.62 to 4.21

with a final MAE of 4.13 for males and 4.90 for females. The

overall gender accuracy went from 98.44% to 98.92%. The

gender model was additionally evaluated on the PPB dataset

which was held-out during the entire experiment and was

not used as training or validation data. Results for PPB are

reported in table XII in the same way that they are reported in

[16]. The bias-mitigating effect can be seen to improve gender

recognition accuracy by 4.7% for females without a decrease

in male accuracy. It improved the results for darker-skinned

people much more than it did for lighter-skinned people, and

the subgroup that showed the most improvement was dark

females. Despite these good results, D6 and Rb females in

our dataset actually showed an increase in error even though

they were included in the challenge set. This indicates that a

data augmentation policy may be effectively transferred from

age to gender to improve accuracy and mitigate bias, however,

to achieve the strongest mitigating effects, the evolutionary

algorithm would have to be run again to discover policies that

work best for gender.

The final MORPH-II MAE was 2.835 and the gender

recognition accuracy was 99.60%. These are the best known

results for generalized age and gender estimation models that

have not been fine-tuned to overfit the dataset [25] [26].

IX. CONCLUSIONS

The results of this work show that bias in an AI model

can be reduced without sacrificing model performance as

a whole. In fact, performance increased for almost every

single subgroup. State-of-the-art results are obtained for age

and gender on the MORPH-II dataset, and results for the

IMDB and Wiki datasets are reported for the first time in

order to provide an idea of general performance. Running

the evolutionary algorithm and evaluating hundreds of models

is a computationally expensive process, but further tuning

of the DAPs suggested in this paper could result in even

TABLE VIII
FINAL RESULTS BY DECADE

Ste ∩Gm Ste ∩Gf Ste ∩Gm Ste ∩Gf

Male Female Male Female

Age MAE | σ Age MAE | σ GR Error GR Error

D0 7.33 | 9.69 8.42 | 10.01 17.02% 5.80%
D1 2.82 | 4.79 5.18 | 7.04 2.71% 2.38%
D2 3.27 | 4.80 3.77 | 5.23 0.60% 1.37%
D3 3.79 | 5.10 4.17 | 5.47 0.78% 1.19%
D4 3.86 | 5.40 5.18 | 6.95 0.51% 1.93%
D5 5.05 | 6.67 7.18 | 9.51 0.40% 2.86%
D6 5.75 | 7.84 7.85 | 10.89 0.30% 4.76%
D7 7.29 | 9.54 9.25 | 11.85 0.00% 5.32%
D8 11.16 | 13.18 12.03 | 15.46 0.00% 8.70%
D9 15.66 | 17.01 17.43 | 19.20 3.70% 28.57%

TABLE IX
FINAL RESULTS BY RACE AND ILLUMINATION

Ste ∩Gm Ste ∩Gf Ste ∩Gm Ste ∩Gf

Male Female Male Female

Age MAE | σ Age MAE | σ GR Error GR Error

Rb 2.43 | 3.25 3.35 | 4.42 0.31% 1.36%
Rw 2.31 | 3.07 2.82 | 3.78 0.00% 0.91%
Ro 2.43 | 3.26 2.85 | 3.63 0.00% 0.00%
B0 5.13 | 7.03 5.75 | 7.76 1.36% 3.66%
B1 3.48 | 5.44 4.57 | 6.33 0.91% 1.52%
B2 2.94 | 4.30 3.67 | 5.17 0.00% 1.69%

better bias-mitigating results. This work shows that DAPs

can be transferred from one task to another on the same

dataset to reduce bias with some success, however, a deeper

exploration into this effect is warranted to understand the

dynamics at play. Algorithmic bias should be a standard metric

for evaluating data-driven models. It is not enough to report

overall performance measures because, as has been proven in

the popular press, these metrics do not identify algorithmic

bias.

TABLE X
FINAL RESULTS BY DATASET

Ste ∩Gm Ste ∩Gf Ste ∩Gm Ste ∩Gf

Male Female Male Female

Age MAE | σ Age MAE | σ GR Error GR Error

M 2.40 | 3.22 3.18 | 4.22 0.27% 1.10%
I 4.62 | 6.38 4.75 | 6.58 1.03% 1.31%
W 4.92 | 6.74 5.50 | 7.46 0.80% 5.25%

TABLE XI
FINAL GENDER SCORES

Ste ∩Gm Ste ∩Gf

Male Female

Precision 99.26% 98.25%
Recall 99.12% 98.52%
F1 99.19% 98.38%
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TABLE XII
PPB GENDER ACCURACY

All F M Darker Lighter DF DM LF LM

Baseline 95.8% 90.8% 99.8% 93.9% 97.1% 87.3% 99.6% 93.3% 100%
Final 97.9% 95.5% 99.8% 96.4% 98.9% 92.6% 99.6% 97.5% 100%
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