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Abstract

This work covers the robotic drone integration of a re-

identification system for Friesian Cattle. We have built a

computationally-enhanced M100 UAV platform with an on-

board deep learning inference system for integrated com-

puter vision and navigation able to autonomously find

and visually identify by coat pattern individual Holstein

Friesian cattle in freely moving herds. For autonomous

drone-based identification we describe an approach that

utilises three deep convolutional neural network architec-

tures running live onboard the aircraft; that is, a YoloV2-

based species detector, a dual-stream Convolutional Neu-

ral Network (CNN) delivering exploratory agency and an

InceptionV3-based biometric Long-term Recurrent Con-

voluational Network (LRCN) for individual animal iden-

tification. We evaluate the performance of components

offline, and also online via real-world field tests of au-

tonomous low-altitude flight in a farm environment. The

presented proof-of-concept system is a successful step to-

wards autonomous biometric identification of individual

animals from the air in open pasture environments and in-

side farms for tag-less AI support in farming and ecology.

The work is published in full in IROS 2019 [4].

1. Introduction

This paper presents an unmanned aerial vehicle (UAV)

platform with onboard deep learning inference (see Fig. 1)

that autonomously locates and visually identifies individual

Holstein Friesian cattle by their uniquely coloured coats in

low altitude flight (approx. 10m) within a geo-fenced farm

area. The task encompasses the integrated performance of

species detection, exploratory agency, and individual ani-

mal identification (ID). All tasks are performed entirely on-

board a custom DJI M100 quadrotor with limited compu-

tational resources, battery lifetime, and payload size. In

doing so, this work attempts to assist agricultural monitor-
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ing in performing minimally-invasive cattle localisation and

identification in the field. Possible applications include the

behavioural analysis of social hierarchies [46, 19, 35] graz-

ing patterns [13, 14] and herd welfare [43]. The search

for targets with unknown locations traditionally arises in

search and rescue (SAR) scenarios [25, 47, 40]. In visually-

supported navigation for this task, approaches broadly op-

erate either a map-based or map-less paradigm [6, 9]. Map-

less approaches have no global environment representation

and traditionally operate using template appearance match-

ing [29, 18], optical-flow guidance [42], or landmark feature

tracking [42, 41]. More recently, such systems have been

replaced with visual input classification via CNNs [12, 37].

In this work, we build on a simulation setup presented in

[3] and formulate a 2D global grid approximation of the

environment (see map M in Fig. 1) for storing visited po-

sitions, current location, and successful target recoveries.

This concept is inspired by occupancy grid maps [7, 34], as

opposed to post-exploration maps [32] or topological maps

[20]. For our cattle recovery task – and despite their sim-

plicity – grid maps still represent a highly effective tool [3]

for exploring the solution space of AI solutions [49, 30].

Coat pattern identification of individual Friesian cattle rep-

resents a form of animal biometrics [23]. Early systems

for the particular task at hand utilised the Scale-Invariant

Feature Transform (SIFT) [26] on image sequences [27] or

Affine SIFT (ASIFT) [33] to map from dorsal cow patterns

to animal IDs [5]. However, for up-to-date performance we

base our individual ID component on recent CNN-grounded

biometric work [2] where temporal stacks of the regions

of interest (RoIs) around detected cattle are analysed by a

Long-term Recurrent Convolutional Network (LRCN) [10]

as shown in Figure 1 in red. This architecture represents

a compromise between light-weight onboard operation and

more high-end networks with heavier computational foot-

prints. Whilst aerial wildlife census applications routinely

use manually controlled UAVs [16, 21, 1, 39] and have

experimented with widely automated photographic gliders

[31]. To the best of our knowledge this line of work presents

the first proof-of-concept system for fully autonomous ex-

ploration and online individual biometric identification of

animals completely onboard an aircraft.
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Figure 1. Onboard System Overview. For individual Friesian cat-

tle search and identification we propose an approach that utilises

three deep convolutional neural architectures operating onboard

a (a) computationally-enhanced DJI Matrice 100 platform to

achieve species detection (green), exploratory agency (blue), and

individual animal ID (red). In particular, a (b) DJI Zenmuse

X3 camera stream reshaped to 720 × 720 images is processed

by (c) a YoloV2-based Friesian cattle detector yielding (d) RoI-

annotated frames I . These are transformed into an (e) 5 × 5 oc-

cupancy grid map S and also a set of (f) spatio-temporal track-

lets {T0, T1, ..., Tp}. The map S is input to a (g) tactical network

based on AlexNet, which forms a dual stream navigation archi-

tecture together with a (i) strategic network operating on (h) a

long-term explorational history memory M . Both streams are

concatenated into (j) a shallow navigation net that outputs (k)

a score vector V based on which possible navigational actions

a ∈ {N,W,S,E} are selected. During operation selected ac-

tions are (l) performed grounded in GPS and, in-turn, (m) the po-

sitional history M is updated. For individual ID (e) each tracklet

T is rescaled and fed into an (n) Inception V3 network up to the

pool 5 layer followed by (o) a LSTM unit for temporal informa-

tion integration mapping to (p) a vector over the individual cattle

IDs.

2. Hardware

We use the DJI Matrice 100 quadrotor UAV, which

houses the ROS-enabled DJI N1 flight controller, as our

base platform. It has been employed previously across var-

ious autonomous tasks [17, 8, 48, 24]. We extend the base

M100 platform by adding an Nvidia Jetson TX2 mounted

on a Connect Tech Inc. Orbitty carrier board to enable on-

board deep inference via 256 CUDA cores under Nvidia’s

PascalTMarchitecture. Also onboard is the DJI Manifold

(essentially an Nvidia Jetson TK1) to decode the raw im-

age feed from the onboard camera (the DJI Zenmuse X3

camera/gimbal) and to add further computational capacity.

The X3 camera is mounted on rubber grommets and a 3-

axis gimbal, which allows for rotor vibration isolation and

independent movement of the flight platform for stabilised

footage and programmatically controlled roll-pitch-yaw. A

Quanum QM12V5AUBEC voltage regulation device was

fitted to power non-conforming devices feeding off the pri-

mary aircraft battery. In addition, customised mounts were

added for WiFi antennas to monitor the craft remotely (see

Fig. 2).

3. Experimental Setup

Flights were performed over a two-week experimental

period at the University of Bristol’s Wyndhurst Farm in

Langford Village, UK on a consistent herd of 17 year-

ling heifer Holstein Friesian cattle satisfying all relevant

animal welfare and flight regulations. Experiments con-

sisted of two phases: (a) training data acquisition across

14 (semi)manual flights, and subsequent (b) conduction of

18 autonomous flights. Training data was acquired over

two day-long recording sessions where manual and semi-

autonomous flights at varying altitudes were carried out,

recording video at a resolution of 3840 × 2160 at 30fps.

The result was a raw dataset consisting of 37 minutes from

15 videos over 14 flights occupying 18GB. Overall 2285

frames were extracted from these video files at a rate of

1Hz. First, after discarding frames without cattle, 3120

bounding boxes around individual cattle were labelled in

the 553 frames containing cattle. Animals were also manu-

ally identified as ground truth for individual identification.

Secondly, to produce ground truth for training the cattle de-

tector, square sub-images were manually annotated to en-

compass individuals such that they are resolved at approxi-

mately 150× 150 pixels. Fig. 3 illustrates the full pipeline.

Figure 2. Physical UAV Platform. (left) Front view of the cus-

tomised and fully assembled DJI Matrice 100 UAV flight platform

with selected individual components highlighted. (right) Close-

ups of the rear and side of the aircraft revealing custom mounts

for two centrally fixed onboard computers, WiFi antennas and the

GPS unit.
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4. Implementation

Cattle detection and localisation is performed in realtime

frame-by-frame using the YOLOv2 [38] CNN. The network

was retrained from scratch on the annotated region dataset,

consisting of 11, 384 original and synthetic training images

and associated ground truth labels. Synthetic instances were

generated via image augmentation; stochastic combinations

of rotation, cropping, affine transformations, etc. Model in-

ference operates on 736×736 images obtained by cropping

and scaling the source 960 × 720 pixel camera stream. As

shown in Figure 1, this process yields a set of m bound-

ing boxes B = {b0, b1, ..., bm} per frame with associated

object confidence scores. Inference on each of n = 5 sam-

pled frames then produces a box-annotated spatio-temporal

volume {B0, B1, ..., Bn}. Bounding boxes are associated

across this volume by accumulating detections that are con-

sistently present in cow-sized areas of an equally subdi-

vided image. This method is effective for reliable short-

term tracking due to distinct and non-overlapping targets,

slow target movement and stable UAV hovering. The out-

puts are p ≤ n short individual animal tracklets reshaped

into an image patch sequence {T0, T1, ..., Tp}, which forms

the input to the individual identification network. In addi-

tion, the current frame I is also abstracted to a 5 × 5 grid

map S encoding animal presence in the field of view of the

camera (see Fig. 1).

Navigation activities aim at locating as many – them-

Figure 3. Training Data Annotation. Across all 15 videos gath-

ered for training data acquisition, 553 frames contained cattle. La-

belling bounding boxes around individual animals yielded 3120

cattle patches. Labelling 720 × 720 regions containing anno-

tated cattle patches yielded the 1423 images annotated with cat-

tle bounding boxes that form the base data for species detector

training. Manual identification of the 17 cows, on the other hand,

produced the base data for training the individual identification

components.

selves moving – individual animals as possible on the short-

est routes in a gridded domain where a target counts as

‘located’ once the agent occupies the same grid location

as the target. To solve this dynamic travelling salesman

task (with city locations to be discovered on the fly), we

use a dual-stream deep network architecture, as first sug-

gested in our previous work [3]. The method computes

grid based navigational decisions {N,W,S,E} based on

immediate sensory (tactical/exploitation) and historic navi-

gational (strategic/exploration) information using two sep-

arate streams within a single deep inference network. As

shown in the paper, this strategy can significantly outper-

form simple strategies such as a ‘lawnmower’ pattern and

other baselines. To summarise the method’s operation, the

sensory input S is processed via a first stream utilising a

basic AlexNet [22] design (see Fig. 1) because of its visual

simplicity. A second stream operates on the exploratory his-

tory thus far, as stored in a long-term memory map M . This

stores the agent’s present and past positions alongside ani-

mal encounters within the flight area of 20 × 20 grid loca-

tions. The agent’s starting position is fixed and M is reset

after δ% of the map has been explored. Both these streams

are concatenated into a shallow integration network that, as

shown in Figure 1, maps to a SoftMax normalised likeli-

hood vector V of the possible navigational actions. Dur-

ing inference, the network selects the top-ranking naviga-

tional action from {N,W,S,E} based on V , which is per-

formed and, in-turn, the positional history M is updated.

For training, the entire two-stream navigation network is

optimised via stochastic gradient decent (SGD) with mo-

mentum [36] and a fixed learning rate e = 0.001 based on

triples (S;M ;V ) using one-hot encoding of V and cross-

entropy loss. This unified model allows for the backprop-

agation of navigation decision errors across both streams

and domains. For training, we simulate 10, 000 episodes

of 17 pseudo-randomly [28] placed targets in a 20 × 20
grid and calculate optimal navigation decisions (S;M ;V )
by solving the associated travelling salesman problem. 10-

fold cross validation on this setup yielded an accuracy of

72.45% in making an optimal next grid navigation decision

and a target recovery rate of 0.26± 0.06 targets per move.

Individual identification based on an image patch se-

quence {T0, T1, ..., Tp} is performed via an LRCN, first in-

troduced by Donahue et al. [10]. In particular, as shown

in Figure 1, we combine a GoogLeNet/Inception V3 CNN

[44, 45] with a single Long Short-Term Memory (LSTM)

[15] layer. This approach has demonstrated success in dis-

ambiguating fine-grained categories in our previous work

[2]. Training of the GoogLeNet/Inception V3 network takes

groups of n = 5 same class randomly selected RoIs, each of

which were non-proportionally resized to 224× 224 pixels.

SGD with momentum [36], a batch size of 32 and a fixed

learning rate e = 0.001 were used for optimisation. Once
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Figure 4. Annotated Autonomous Flights. Example of an anno-

tated agent flight path within the exploratory grid over the entire

course of the experiment. Cell colours are defined as (black): un-

visited locations, (light blue): visited locations, (dark blue): seen

or covered areas, (orange): agent starting position, (green): finish-

ing agent position and (red): discovered target positions.

trained, samples are passed through this GoogLeNet up to

the “pool 5 layer” and feature vectors are combined over the

n samples. A shallow LSTM network is finally trained on

these vector sequences using a SoftMax cross-entropy cost

function optimised against the one-hot encoded identities

vector representing the 17 possible classes.

5. Results

We conducted 18 fully autonomous test flights at a low

altitude (approximately 10m) above an area of 20×20 cells

covering altogether 147 minutes. For all experiments, we

ran the object detection and exploratory agency networks

live. Note that the herd was naturally dispersed in these ex-

periments and animals were free to roam across the entire

field in and out of the covered area. Thus, only a few indi-

viduals were present and recoverable in this area at any one

time. The median coverage of the grid was 70.13% with

median flight time of approximately 8 minutes per experi-

ment, and a median of 77 grid iterations per flight.

For offline analysis, the UAV saved to file one acquired

720×720 image at each exploratory agency iteration, yield-

ing 1039 images. 99 of those images actually contained tar-

get cows that were hand labelled with ground truth bound-

ing box annotations and identities according to the VOC

guidelines [11]. A detection was deemed a successful true

positive based on the IoU (ov ≥ 0.5). Grounded in this,

we measured the YOLOv2 detection accuracy to be 92.4%,

where out of the 111 present animals, 2 were missed and

7 false positive nested detections occurred. We then tested

separately, the performance of the single frame Inception

V3 individual identification architecture (yielding 93.6%
accuracy), where all ground truth bounding boxes (not only

the detected instances) were presented to the ID component.

In contrast, and as shown in Table 1, when identification is

performed on detected RoIs only then the combined offline

system accuracy is 91.9%.

Detection on Single Frame ID Combined

# Sample # Animal Sample Frames on Labelled RoIs Detection+ID

Frames Instances Accuracy (%) Accuracy (%) Accuracy (%)

1039 111 92.4 93.6 91.9

Table 1. Offline Performance Results.

For online autonomous operation, all computation was

performed live in real-time onboard the UAV’s computers

(DJI Manifold Nvidia Jetson TX2). Figure 4 depicts vari-

ous example flights with detailed annotations of flight paths,

animal encounters and identification confidences. Across

the 1039 grid locations visited during the set of experi-

ments, the aircraft navigated centrally above a detected indi-

vidual 18 times, triggering identification. These individuals

represented a small subset (6 individuals) of the larger herd

that tended to be more comfortable with the presence of the

aircraft directly above them. Note that this mode of oper-

ation eliminates the problem of clipped visibility at image

borders, minimises image distortions, optimises the view-

point, and exposes the coat in an orthogonal view. For trig-

gered identification, we store LRCN confidence outputs af-

ter processing up to 5 same class patches T to compare per-

formance differences between single view and multi-view

identification. The respective overall results are given in

Table 2. Notably, across the small sample set, the model

performed perfectly.

LRCN Identification Single Frame Identification

# Samples Accuracy (%) Accuracy (%)

18 100 94.4

Table 2. Online Identification Results.

6. Conclusion

The experiments conducted confirm demonstrable iden-

tification robustness of the approach. This gives rise to fu-

ture agricultural automation possibilities with potential im-

plications for animal welfare and farm productivity. Be-

yond farming, the concept of autonomous biometric animal

identification from the air as presented opens up a realm of

future applications in fields such as ecology, where animal

identification of uniquely patterned species in the wild (e.g.

zebras, giraffes) is critical to assessing the status of popula-

tions. Future work will investigate the effect of varying the

UAV altitude and consequently, varied environment visibil-

ity, target resolution, etc.
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