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Abstract

In this paper we propose a method to match pelage

patterns of the Saimaa ringed seals enabling the re-

identification of individuals. First, the pelage pattern is ex-

tracted from the seal’s fur using a method based on the Sato

tubeness filter. After this, the similarities of the pelage pat-

tern patches are computed using a siamese network trained

with a triplet loss function and a large dataset of manu-

ally selected patches. The similarities are then used to find

the best matching patches from the images in the database

of known individuals. Furthermore, we employ the pro-

posed pattern matching method to build a full framework for

the ringed seal re-identification, consisting of CNN-based

animal segmentation, patch correspondence detection, and

ranking the images in the database of known seal individu-

als based on the similarity to the query image. Our experi-

ments on challenging datasets of Saimaa ringed seals show

that the proposed method achieves promising identification

results, providing a useful tool for the Saimaa ringed seal

monitoring.

1. Introduction

Automatic wildlife camera traps and crowd-sourced im-

age material provide novel possibilities to monitor endan-

gered animals species. However, massive image volumes

that these methods produce is overwhelming for biologists

to go through, which calls for automatic systems to perform

the analysis. The main task is to identify the animal individ-

uals in the images to provide the basis for the monitoring,

including population size estimation and animal migration

tracking.

Saimaa ringed seals (Pusa hispida saimensis) are endan-

gered due to various anthropogenic factors, such as random

bycatch and climate change. In addition, the risk of their

extinction is high due to low genetic diversity and small

population (currently around 400 individuals). The current

knowledge about this animal is mainly based on telemet-

ric studies with a relatively small number of individuals.

Photo-ID (photo-identification) using camera traps is an ap-

proved and effective non-invasive method for studying and

monitoring the Saimaa ringed seals [14]. Ringed seals have

permanent pelage patterns that are unique to each individual

and can be used for the identification (see Fig. 1).

Figure 1. Saimaa ringed seal identification based on pelage pattern

patches.

Automatic methods for the re-identification of individual

animals have been proposed for various species. However,

the re-identification of ringed seals introduces some addi-

tional challenges. First, large variation in possible poses is

further exacerbated by the deformable nature of those an-

imals. This, in addition to the fact that the pelage pattern

is non-uniform and depends on the visible area of the ani-

mal, limits the size of the regions that could actually be used

for the identification task. Second, the contrast between the

ring pattern and the rest of the pelage is low and the appear-

ance of the pattern varies between wet and dry fur. Finally,

image quality of automatic camera traps is typically low,

which might lead to the loss of details. These challenges

make the re-identification considerably more difficult for
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ringed seals than, for example, for zebras with clearly visi-

ble pattern and limited variation in the pose of the torso.

In this paper, we propose a method for comparison and

matching of ringed seal pelage pattern patches. The method

starts by extracting the pelage patterns from the images by

utilizing the Sato tubeness filter based method [23]. This

filter can be used to detect continuous ridges, e.g. tubes,

wrinkles, rivers, or, in our case, pelage pattern. It calculates

the eigenvectors of the Hessian to compute the similarity of

an image region to tubes. This step gets rid of the irrele-

vant factors, such as illumination, and focuses the attention

of the algorithm on the actual pattern itself. This is crucial

since most of the data is collected with automatic camera

traps and the ringed seals tend to stay in the same region.

The same seal is often captured with the same camera, the

same background, and the similar illumination and pose.

This causes supervised methods to learn superficial features

which might appear as good features in the training data, but

do not help to re-identify the seals in the real-world appli-

cation scenarios. To calculate similarities between patterns

and to match them to each other, a siamese network trained

with a triplet loss function is used.

We build a full framework for the identification of

Saimaa ringed seal utilizing the pattern matching. The

framework starts with CNN based segmentation of the seal

from the background. This allows reliable pattern extrac-

tion. Pattern patches are then extracted from the query im-

age and the best matches for each patch are searched from

the database of patches from the known seals. The final re-

identification is done based on the similarity of the pattern

patches. Each patch of the query image is compared to all

patches from the database image, and a similarity heatmap

is built. Local maxima are used as candidates for this patch

projection. A geometrically aware algorithm then selects

suitable projection sets for the entire image and ranks the

comparative similarity.

In the experimental part of the work, we demonstrate

that the proposed pelage pattern matching provides high

matching accuracy outperforming siamese network applied

for unprocessed patches. Moreover, we show promising

identification results, providing a useful semi-automatic re-

identification tool for biologists. The system offers N pos-

sible candidates and the user manually chooses the corre-

sponding animal individual.

To summarize, this paper makes the following contribu-

tions: 1) a pattern extraction algorithm that works on im-

ages captured in the wild and reduces the impact of exter-

nal conditions such as lighting, weather and location, and

2) a novel end-to-end Saimaa ringed seal re-identification

method that utilizes a siamese triplet network for compar-

ing distinct image regions and a matching algorithm that

checks topological consistency of corresponding points.

2. Related work

2.1. Animal reidentification

Traditional tools for monitoring animals such as tagging

requires a physical contact with the animal which causes

stress and may change the behavior of the animal. To avoid

this, camera-based methods utilizing computer vision al-

gorithms have been developed for animal re-identification.

Many of them are species-specific which limits their usabil-

ity [19, 22, 10].

There have also been research efforts towards creating

a unified approach applicable for identification purposes

for several animal species. Wildbook [3] is a large-scale

project for the study, monitoring and identification of ani-

mals with distinguishable marks on the body. Wildbook’s

computer vision based identification methods are build on

the HotSpotter algorithm [7]. This algorithm is not species

specific and has been applied to Grevy’s and plain zebras,

giraffes, leopards, and lionfish. HotSpotter uses viewpoint

invariant descriptors and a scoring mechanism that empha-

sizes the most distinctive keypoints and descriptors. In [26],

a species recognition algorithm based on sparse coding

spatial pyramid matching (ScSPM) was proposed. It was

shown that the proposed object recognition techniques can

be successfully used to identify animals on sequences of

images captured using camera traps in nature.

Due to the recent progress in deep learning, convo-

lutional neural networks (CNN) have also become popu-

lar tools for animal biometrics. For example, in [2], re-

identification of the cattle using CNN approach combined

with k-NN classifier was proposed. The method achieved

the accuracy of over 80% outperforming competing meth-

ods. The approach is, however, specific to muzzle patterns

of cattle. The muzzle patterns are obtained manually, pro-

viding consistent data that simplifies the re-identification.

A typical problem in the wildlife animal re-identification

is that it is practically impossible to collect a large dataset

with large number of images for all individuals. Often the

method needs to be able to identify an individual with only

one or few previously collected examples. Moreover, the

animal re-identification method should be able to recognize

if the query image contains an individual that is not in the

database of the known individuals. Recently, siamese neu-

ral network based approaches have gained popularity in the

task of animal re-identification [13]. These methods pro-

vide a tool to classify objects based on only one example

image (one-shot learning) and to recognize if it belongs to

a class which the network has never seen. For example,

in [24], the effectiveness of siamese neural networks for re-

identification of Human, Chimpanzee, Humpback Whale,

Fruit Fly, and Octopus was demonstrated.

In [20], natural markings of manta rays were used for

pose invariant re-identification. The method uses a CNN ap-
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proach with the semi-hard triplet mining strategy, the triplet

loss function, and an extensive geometric augmentation of

the input images. The method achieved 65 % Top-1 ac-

curacy and 97 % Top-10 accuracy. However, it should be

noted that the method requires the user input to localize the

region of interest.

In [15], a method that combines the CNN baseline with

pose-estimation to detect and re-identify Amur tigers was

presented. It achieved the Top-5 accuracy of 90%. In [18], a

three-module deep CNN architecture in order to learn com-

plementary, non-obvious features as well as obvious ones

was used for the Amur tiger identification. The first mod-

ule learns embeddings from an image as usual, the second

module utilizes the same architecture, but receives an image

with removed parts that correspond to areas of interest of the

first network, and the third module combines their embed-

dings for the final result. The method achieves the Top-5

accuracy of 91,6%. In [17], Amur tiger images were sepa-

rated into streams that are utilized by different embedding

networks: trunk (body) parts and limb parts. Trunk fea-

ture vectors are learned by a network with 8 vertical stripes,

while limb feature vectors are learned with multiple-branch

network for different limb components.The method demon-

strates the best result on the proposed dataset with the Top-5

accuracy of 95,3%.

In [27, 5, 21], the re-identification of the Saimaa ringed

seals was considered. In [27], a superpixel based segmenta-

tion method and a simple texture feature based ringed seal

identification method were presented. In [5], additional pre-

processing steps were proposed and two existing species

independent individual identification methods were evalu-

ated. However, the identification performance of neither of

the methods is good enough for most practical applications.

In [21], the re-identification of the Saimaa ringed seals was

formulated as a classification problem and was solved us-

ing transfer learning. While the performance was high on

the used test set, the method is only able to reliably perform

the re-identification if there is a large set of examples for

each individual. Furthermore, the whole system needs to be

retrained if a new seal individual is introduced. Finally, it is

unclear if the high accuracy was due to the methods ability

to learn the necessary features from the fur pattern, or if it

also learned features such as pose, size, or illumination that

separated individuals in the used dataset, but do not provide

the means to generalize the methods to other datasets.

2.2. Siamese networks

The task of re-identification of people and animals [16, 4,

8] could be formulated in terms of learning a distance metric

between individuals. The general strategy is to train a model

to discriminate between a collection of same/different pairs.

Since the model learns generic embeddings rather than a

rigid classifier it is able to better generalize to new classes

that have not been used during the training.

The triplet neural network [12, 25] is an extension of the

Siamese Neural Network where three input samples are si-

multaneously considered in the loss function. The goal is

to learn an embedding such that the distance between sim-

ilar embedded samples is closer than the distance between

dissimilar samples.

During the training, three inputs are sampled and run

through the same embedding net: anchor xa, positive xp,

and negative xn samples. The loss function is calculated

using the embedded representations of those samples as fol-

lows:

Ltriplet(xa, xp, xn) = max(0,m+

‖ f(xa)− f(xp) ‖
2
2 − ‖ f(xa)− f(xn) ‖

2
2),

(1)

where f(·) is the embedding network, and m is some mar-

gin. This loss function turns to zero when the positive dis-

tance is smaller than the negative by more than a specified

margin. If the difference is smaller than the margin, or if

the positive distance is larger than the negative, the loss is

non-zero.

In [11], the concept of triplet mining is being discussed.

Triplet mining refers to a strategy of selecting triplets for

training. The issue is that the number of triplets grows cu-

bically with the size of the dataset, and most of those triplets

eventually become useless for learning. If one tries to learn

the concept of the ”same individual” then being shown pic-

tures of individuals with different clothes over and over

again does not improve the learning. However, being shown

similar-looking but different individuals, or the same in-

dividual in different poses, improves the learning dramat-

ically. Hard triplet mining strategy aims to achieve that by

only giving the network examples hard negative examples

(similar-looking but different) and hard positive examples

(differently-looking but similar). The issue with hard triplet

mining is that the network is essentially learning on a heav-

ily outlier-biased selection of triplets which can result in

poor performance on comparatively ”easy” tasks. Semi-

hard strategy alleviates that by including ”moderate” exam-

ples on either negative side, positive side, or both.

3. Saimaa ringed seal re-identification

The proposed re-identification process for the Saimaa

ringed seals is shown in Fig. 2. First, the seal is segmented

from the background. This step is crucial since most of the

images are obtained using static camera traps. Therefore,

the same seal is often captured with the same background

increasing the risk that the supervised identification algo-

rithm learns to “identify” the background instead of the ac-

tual seal if the full image or the bounding box around the

seal is used. This may result in a system that is unable to

identify the seal in a new environment. After segmentation,
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the seal is cropped to bounding box and the pelage pattern is

extracted. The region in the pattern image corresponding to

the seal segment is then divided into small patches. Finally,

the identification is performed by finding the most similar

patches in the patch database of the known seals.

Figure 2. Proposed identification algorithm.

3.1. Segmentation

To segment the seal from the background the Deeplab

model [6] is used. DeepLab is a state-of-the-art deep learn-

ing model for semantic image segmentation. It contains

three main advantages compared to the competing meth-

ods. First, It uses atrous convolution which is a powerful

tool in dense prediction tasks. Atrous convolution allows to

explicitly control the resolution at which feature responses

are computed within deep CNNs. Second, atrous spatial

pyramid pooling (ASPP) allows to robustly segment ob-

jects at multiple scales. ASPP probes an incoming convo-

lutional feature layer with filters at multiple sampling rates

and effective fields-of-views, thus capturing objects as well

as image context at multiple scales. Third, the localiza-

tion of object boundaries is improved by combining meth-

ods from deep CNNs and probabilistic graphical models.

The commonly deployed combination of max-pooling and

downsampling in deep CNNs achieves invariance, but has

a toll on localization accuracy. The method overcomes this

by combining the responses at the final DCNN layer with a

fully connected Conditional Random Field (CRF) which is

shown both qualitatively and quantitatively to improve lo-

calization performance.

To make sure that the pelage pattern is fully covered in

the seal segment, two additional postprocessing steps are

applied to segmentation maps to close holes and to smooth

the borders. In order to close the holes in the pattern (both

internal and external) we apply sliding window convex hull

on a condition that pattern in a current window is not con-

nected. The image is broken down into many small heavily

overlapping square windows. Each is checked for connec-

tivity, and if some part of the current window is not con-

nected then we paint it over with convex hull. This way, the

overall smooth structure of the seal outline remains undis-

turbed, but deep external holes get closed. This allows us

to preserve a general concave outline of a seal, while clos-

ing potential open holes in the pattern. Smoothing of the

image is a simple two-pass Gaussian filter with threshold-

ing to keep the mask binary. Smoothing gets rid of blocky

artifacts produced by our hole closing algorithm.

3.2. Pelage pattern extraction

Images of the Saimaa ringed seals are very diverse. They

are taken from various distances and viewing angles. The

Saimaa ringed seals are characterized by low mobility, but

large variability of poses. The fur pattern covers the entire

body of the animal and does not have any specific location.

In addition, due to the fact that the images were obtained

from the camera traps in different weather conditions and

with different lighting, there is a significant amount of ex-

cess noise.

In order to remove noise, to avoid learning of the su-

perficial characteristics, and to reduce the amount of data

needed to train the identification algorithm, the pelage pat-

tern is extracted from the segmented seal images. The pat-

tern extraction algorithm is based largely on the tubeness

filter with processing steps to increase fidelity and consists

of the following steps:

1. Sato tubeness filter. This filter can be used to detect

continuous ridges (tubes, wrinkles, rivers, etc.). It is

well-suited for the Saimaa ringed seals pattern extrac-

tion since their patterns are mostly continuous ridges

that form rings and other shapes.

2. Unsharping using a mask with a radius of 5 and an in-

tensity of 25. This operation makes the results sharper.

3. Removing segmentation border which heavily influ-

ences the Sato filter. This step is necessary since the

segmentation border is detected as a ”tube”, but it does

not belong to the pattern.

4. Morphological opening using a disk structuring ele-

ment with a radius of 3. This operation allows us to

remove small artifacts from the grayscale image.

5. Adaptive histogram normalization This operation is

performed in order to make the image brighter with-

out losing details.

6. Otsu’s thresholding and zeroing out pixels below it.

This makes pattern edges well-defined while still keep-

ing pattern smooth.

7. Morphological opening using a disk structuring ele-

ment with a radius of 3. This operation is also re-

peated, and this time it removes artifacts left from

thresholding.
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8. Unsharping using a mask with a radius of 5 and an

intensity of 2. This unsharping mask is weaker than

before. It only needs to slightly sharpen the image after

opening in order to keep the pattern well-defined and

well-contrasted with black areas.

The result of pattern extraction is a grayscale image with

an explicit pattern outline as shown in Fig. 3.

Figure 3. Visualization of pattern extraction result. First row:

Steps 1–4 of the algorithm (from the left to the right). Second

row: Steps 5–9 of the algorithm (from the left to the right). Third

row: the source image (left) and the end result of pattern extraction

(right).

3.3. Patch matching

Another noticeable problem with the Saimaa ringed seal

re-identification is that the visible part of the pelage pattern

varies greatly between different images of the same seal.

Therefore, the system should be robust to the seal pose and

angle of viewing. To enable this, the pattern image is di-

vided into patches that are then used to find correspond-

ing patches in the known individuals. Dividing the pattern

into patches also helps to keep the size of the network used

for matching compact. Before the patch extraction, the pat-

tern segment is cropped and scaled to the common size to

make scale between images similar relative to the size of the

seal. Then overlapping patches with the common size (in

our case 160× 160 pixels with 50% overlap) are extracted.

Finally, the pattern patches with less than 10% non-black

pixels are removed.

Triplet Neural Network [12] is used to calculate the sim-

ilarity between two patches. The network itself consists of 2

halves: a convolutional part and a fully-connected part. We

augment the network with rotation-invariance pass. Each

image is rotated using a set of predefined angles (we use

-30, -20, -10, 0, 10, 20, 30 degrees). Then each rotated ver-

sion of the same image is passed through the convolutional

part of the network, and the results are summed together

before being passed to the fully connected part.

Let g be the convolutional part of the network, f is fully

connected part, Θ is the set of predefined rotation angles

and xθ is the image rotated by the angle θ then the result of

rotation-invariance pass can be described as such:

y(x) = f(
∑

θ∈Θ

g(xθ)) (2)

For triplet networks, the training and the evaluation pro-

cesses differ considerably. During the training, the network

receives three samples at a time: anchor, positive, and nega-

tive. The anchor is a base image (pattern patch), the positive

is a sample of the same class (patch from the same pattern

of the same seal) as the anchor, and the negative is a sam-

ple of a different class (patch from a different seal) from

the anchor. The objective of the network is to encode these

samples in a way that the L2 metric distance between the

anchor and the positive is smaller (by a pre-defined mar-

gin) than the distance between the anchor and the negative

(Fig. 4).

Figure 4. Triplet Network training for patch matching.

When the trained network is applied to the matching task

it takes a sample (pattern patch) as the input and produces

an encoding vector (feature vector). Our encoding vector

consists of 512 dimensions which is the same number as

the number of outputs of the CNN. These encodings can be

compared using L2 metric which makes it straightforward

and fast to compute distances between them. The patch cor-

respondences can be found by comparing the encodings of

patches from the query image to all the patches from the la-

beled images in the database. Those correspondences pro-

vide the basis for the re-identification. It should be noted

that the encoding vectors need to be computed only once

for each patch enabling efficient computation.

3.4. Individual reidentification

The goal of the individual re-identification algorithm is

to predict a seal identifier (unique for each individual ani-

mal) given a query image and a gallery of known individ-

uals. The gallery contains a small number of distinct, high

quality pattern images of each seal captured from different

sides in order for us to be able to reliably perform compar-

isons with query images. It is used to construct a pattern
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patch database which consists of the encoding vectors and

the seal identifiers for each patch.

The proposed re-identification algorithm ranks the simi-

larity between two images (the query image and a gallery

image) and can be divided into the three main steps: 1)

patch-similarity heatmap generation to select candidates of

corresponding patches in the gallery image, 2) candidate fil-

tering using topology-preserving projections, and 3) candi-

date ranking. The patch similarity heatmaps are generated

by dividing both images into patches and comparing each

query image with all gallery image patches. Local minima

of the heatmap (high similarity regions) are found and used

as projection candidates.

Candidate filtering is performed by selecting the projec-

tion candidates that preserve topological relations between

original patches. We use a simple angle-based method to

calculate the topological consistency in the candidate pro-

jection. The algorithm calculates angles for each three con-

secutive projection points and compares them to the same

angles between patch center points. The total angle differ-

ence is the rank (lower is better) of the topological similar-

ity. Finally, the ranking is obtained by calculating the av-

erage weight of topologically similar projections and by se-

lecting the one with the lowest average weight. This weight

is the total rank of similarity between the query image and

the gallery image (see Fig. 5).

Figure 5. Examples of the region similarity heatmaps: the query

image (left) and gallery image (right). Heatmaps for a query im-

age highlight a single region that is being compared to the entire

gallery image. Heatmaps for the gallery image show regions which

are most similar to the highlighted region from the query image.

4. Experiments

The experiments were performed using a challenging

database of the Saimaa ringed seals collected using auto-

matic camera traps (see Fig. 6).

4.1. Segmentation

4.1.1 Data

A large annotated dataset is needed to train the Deeplab

model. Annotating the dataset of this size manually is very

labor-intensive, so a heuristical, semi-automatic approach

Figure 6. Examples of the seal images.

to generate segmentation ground truth was utilized. First, a

pretrained model able to segment similar animals was ap-

plied for the dataset of more than 308 846 seal images to

obtain a subset of well-segmented seals. The results were

checked first automatically by discarding fully black im-

ages, the segmentation results with low pixel density, and

the segmentation results which took up more than 50% of

the image. Then, the rest were filtered manually to re-

move incorrectly segmented images. In addition, 100 im-

ages were manually segmented to complement the dataset

with those images that were difficult to segment for the

pretrained model. The resulting dataset contained nearly

100 000 well-segmented, high-definition images with bi-

nary segmentation masks. The dataset was split as follows:

56 000 images for training, 21 000 images for validation,

and 22 800 images for testing.

4.1.2 Results

The Deeplab model was trained using the Tensorflow deep

learning framework [1]. A model pretrained on the Pascal

VOC dataset [9] was used and transfer learning was applied

changing the last network level to separate only two classes:

the seal and the background. Examples of the segmentation

results are shown in Fig. 7.

Figure 7. Examples of segmentation results.

Intersection over Union (IoU) between the segmentation

result and the ground truth was used as a metric to evaluate

the results. The mean IoU over all images in the test set
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was 82% without postprocessing the segments. With post-

processing the mean IoU of 91% was achieved. Fig. 8 illus-

trates the IoU distribution of the segmented images before

and after postprocessing. More than 75% of images have

IoU more than 90% and 20% have more than 95%.

50%-100% 60%-100% 70%-100% 80%-100% 90%-100%
0%

20%

40%

60%

80%

100%

Raw

Processed

Figure 8. The impact of postprocessing on segmentation quality.

The horizontal axis represents the IoU bucket while the vertical

axis is the percentage of images that fell into said IoU bucket after

segmentation with and without postprocessing.

4.2. Patch matching

4.2.1 Data

In order to train the triplet network for patch matching, a

dataset of 3000 different labeled patches belonging to 26

different classes was collected. Each class corresponds to

one manually selected location in the pelage pattern of one

seal, and each sample from one class was extracted from

different images of the same seal. Thus, the class is defined

here as the spatially matching corresponding patches in the

images of the considered individual seal, not as the class of

the individual seal. The dataset was further augmented by

random rotations, scaling, and shifts (Fig. 9).

Figure 9. Examples of patches. Original patches (top two rows)

and the corresponding pattern patches (bottom two rows).

A different, unrelated set of patches was used to test the

method. The dataset of 1500 patches belonging to 28 differ-

ent classes was collected. None of the classes in the testing

dataset was encountered during the training phase. A patch

size of 160 pixels was used.

4.2.2 Results

To demonstrate the usefulness of the proposed pelage pat-

tern method, the triplet network was tested on both the orig-

inal patches extracted from the segmented images and the

processed patches extracted from pattern images. The re-

sults are presented in Table 1.

Table 1. Patch matching results.

Top-1 Top-2 Top-3 Top-4 Top-5

Pattern

patches

74.6% 79.2% 81.1% 84.5% 87.0%

Original

patches

66.4% 73.0% 76.9% 80.5% 82.5%

The results indicate that the pattern extraction clearly im-

proves the results. This can be explained by the noise and

large variation in appearance such as lighting conditions,

pattern visibility, and shadows that are unavoidable on non-

processed images. This noise prevents the network from

generalizing well during the training, and makes it harder

to extract relevant features during the evaluation.

Figure 10. Examples of patch comparison: query patch (left) and

best matches in the descending order of distance (right). The first

example illustrates the case of robustness to the pattern deforma-

tion, the second example shows matching in the case of lost details,

and the third shows invariance to small rotations.

Fig. 10 shows examples of patches being compared

well despite differences in rotation thanks to the rotation-

invariance pass of the network. Patches on the right exhibit

different angles of rotation compared to the query patch,

and yet they show up in the top-5 comparison.

4.3. Reidentification

4.3.1 Data

The dataset to evaluate the full re-identification framework

consisted of 2 000 images of 46 unique seal individuals.
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Each image contained one Saimaa ringed seal manually

identified by a biologist. The dataset was split into the

gallery set (the database of the known seals) and the query

set (the test set) as follows: 500 images in the gallery set (on

average 10 images per individual, with minimum of 3 and

maximum of 12), and the rest (1500 images) in the query

set (between 5 and 120 images per individual).

4.3.2 Results

The re-identification framework was tested with several

variables. The first is pattern extraction. We performed tests

with and without pattern extraction applied in order to quan-

tify its effect on re-identification performance and training

quality. The second is network rotation invariance. Our pro-

posed rotation invariance pass was tested against the plain

network in order to see how useful it is in the real-world im-

ages outside of synthetic tests. Finally, we implemented two

different image re-identification strategies based on patch

comparison. The first strategy is a simple ”patch voting”

based on the k nearest neighbors (KNN) classification. In

this algorithm, each patch is classified with KNN as belong-

ing to one of individual seals from the gallery set. Then

each patch ”votes” for the seal it belongs to, and the votes

are weighted according to confidence metric. The second

strategy is the proposed heatmap-based topologically-aware

patch matching. The results are shown in Table 2.

Table 2. Re-identification results with different method variables.

OG stands for original images, PAT for pattern extraction, ROT

and noROT signify rotation invariance, KNN is KNN-based patch

voting and TOP is topologically aware heatmaps

Top-1 Top-2 Top-3 Top-4 Top-5

OG-noROT-KNN 50.3% 56.2% 60.9% 63.4% 65.6%

PAT-noROT-KNN 58.1% 64.6% 69.3% 74.0% 76.9%

PAT-noROT-TOP 62.7% 68.3% 72.1% 76.9% 83.7%

PAT-ROT-KNN 64.9% 70.5% 75.0% 80.1% 82.5%

PAT-ROT-TOP 67.8% 73.2% 77.2% 81.7% 88.6%

The results demonstrate that the pattern extraction makes

a significant difference and increase the performance of

the whole re-identification. Moreover, KNN-based patch

voting is worse than topologically aware heatmaps at re-

identification, especially with non-perfect patch comparison

neural network. Finally, rotation invariance gives a small

boost in performance and helps to alleviate some of the ir-

regularities in the dataset.

Currently the task of identifying each seal is performed

manually by experts which takes considerable time and ef-

fort. Because of this, the Top-1 accuracy is not the only im-

portant metric for the re-identification system. Limiting the

choice to a set of best matches during manual identification

is going to speed up the process significantly. High Top-

5 accuracy can help experts with identification tasks while

still leaving them with a great degree of manual control. The

method can adequately present good potential matches from

which an expert can make an accurate conclusion much

faster. Fig. 12 shows examples of re-identification results.

It is evident that the proposed method is capable of handling

complex cases when the pattern is only partially similar or

rotated.

Figure 11. Examples of re-identification results: query images

(left) and top 4 matches (right). Correct matches (same individ-

ual) are highlighted with green and incorrect ones with red.

5. Conclusions

In this paper, we proposed a framework to re-identify

the Saimaa ringed seal individuals from camera-trap im-

ages for monitoring and conservation purposes. The frame-

work consists of seal segmentation using the state-of-the-

art Deeplab model, Sato tubeness filter based pelage pat-

tern extraction method, the siamese network based pattern

patch matching for finding patch correspondences, and a

re-identification algorithm based on the patch similarities

and topology-preserving projections. Our results show that

the framework produces promising re-identification results,

taking step towards fully automated re-identification system

for the Saimaa ringed seals.The method provides a useful

tool for conservation biologist by reducing the amount of

manual work. The framework is species-agnostic and by re-

placing the pattern extraction step it can be applied to other

animal species with similar pelage or fur patterns.
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