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Abstract

We present Cat-like Animals Facial Model (CAFM) –

a 3D Morphable Model (3DMM) constructed from 50

samples, including lion, tiger, puma, American Shorthair,

Abyssinian cat, etc. To the best of our knowledge, CAFM

is the first animal morphable model ever constructed. New

animal face images can be registered automatically by fit-

ting pose and shape parameters of CAFM. Moreover, the

parametric model regulates the naturalness of the gener-

ated animal faces avoiding unreasonable appearance.

Computer vision has recently experienced great ad-

vances in automatic facial landmark detection. In this pa-

per, to demonstrate CAFM’s application to 3D reconstruc-

tion of cat face images, and to put effort towards uniform

annotation scheme of immense databases and fair experi-

mental comparison of cat-like animals’ facial landmark sys-

tems, we improve the labeled cat face data set of 10,000 im-

ages with 15 landmarks. Besides, we propose an algorithm

matching our model to the input cat face images. With the

projection parameters and shape parameter of CAFM, we

can generate corresponding 3D meshes.

1. Introduction

3D reconstruction of all generic objects has always been

a long term goal in computer vision. For human, the task

has achieved good results on human face [10, 8, 11] and

body [3, 5]. On the other hand, computer-aided modeling of

animal faces is still not being touched, or we can say that we

have seen few works on this attempt. The fact that animals

are much less cooperative than human beings leads to a lack

of 3D animal scans, and the huge diversity of animal types

causes 3D reconstruction more challenging.

In this paper, we mainly concentrate on one type of ani-

mal, cat-like animal, as shown in Figure 2. 3D Morphable

Model (3DMM) is a classic 3D statistic model of human

face shape and texture introduced in 1999 [7]. It has be-

come a well-established technology adopted to perform var-

ious tasks in many areas, such as computer vision, human

behavioral analysis, computer graphics and so on [6, 2, 4].

Figure 1. 3D reconstruction result of matching the Morphable

Model CAFM to the input image.

The basic assumption of 3DMM is that a new human face

can be expressed as a linear combination of the shape of m

exemplar faces. As we know, according to Taxonomy, the

same family animals share similar face geometry and head

shape. Therefore, 3DMM can be applied in cat-like animal

applications.

As a parametric model, 3DMM is constructed by per-

forming a data compression technique, typically Princi-

pal Component Analysis (PCA), on training facial meshes.

Based on the average shape of the face, a set of shape coef-

ficients can describe a face. With projection parameters, the

corresponding rendering can be generated. This is work-

ing if and only if each mesh is constructed in a consistent

form where the order and number of vertices, the triangula-

tion, and anatomical meaning of every vertex are in accord

among all meshes. If the model meshes satisfy the above

conditions, we can say they are in dense correspondence.

As the correspondence is solved, it is reasonable to build

the 3DMM with the meshes.

Especially for larger appearance variations of animals,

the powerful priors on 3D face shape of 3DMM provide

more discriminative features captured shape information,

and it can be leveraged in fitting algorithms of in-the-wild

2D images.

Cats, as a popular choice for pets, play an important role

in our life. It means a large number of cat images have been

uploaded and shared on the web, which gives us a way to

get and label the training data. In this paper, we re-labeled

10,000 cat images improved on previous data set [13] with
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Figure 2. The visualization of cat-like animals. Upper: The first

row is the big cats, including lion, tiger, puma, leopard. Lower:

the second row is the cats, including American Shorthair, British

Shorthair, Scottish Fold, Munchkin cat.

15 landmarks, including ears, eyes, nose, and mouth. And

we generate the corresponding 3D meshes by computing

projection parameters and shape parameter of CAFM.

In summary, in order to generate a 3D Morphable Model

of cat-like animals and match this model to 2D images, we

address three main challenges:

1. To fill up the blank of 3D reconstruction of the

animal face, we propose the Morphable Model,

CAFM. With a set of parameters, the parametric

model is able to generate a 3D model avoiding

unnatural appearance.

2. To match the constructed linear face model to

input images, we describe a method matching the

model to 2D data and obtaining the shape param-

eter and projection parameters.

3. To enable the fitting process of the CAFM, we

enhance the cat image database containing 2D cat

face images and 15 landmarks in pairs.

The constructed cat-like animal face dataset is released

at [1] containing pairs of 2D face images with 15 landmarks

and 3D face meshes with projection parameters. The Mor-

phable Model CAFM and the fitting algorithm code are also

released at the same time.

2. Model

To build a 3D Morphable Model, we need a sample set

with a big variety of face shapes. Due to the larger appear-

ance variations of animals compared with human beings,

the samples should be representative. The sample set for

CAFM consists of 50 animals, including lion, tiger, cougar,

leopard, Abyssinian cat, American Shorthair, British Short-

hair, Munchkin cat, Persian cat, Scottish Fold and Siamese

cat.

2.1. Sample Construction

The samples such as lion, tiger, cougar, and leopard

come from The SMAL Model [14]. This team created the

animals’ models by scanning toy figurines using an Artec

Figure 3. The front view, the side view, and the overlook view

of our created 3D cat meshes. The first row shows samples of

American Shorthair and British Shorthair. The second row shows

samples of Persian cat and Siamese cat.

Figure 4. Every index in shape matrix corresponds to the same

semantically vertex. In this example, the first index leads to the

nose tip.

hand-held 3D scanner. Here we select the head of these

models with n = 1256 vertices and they shared topology.

We manually create 3D meshes of cat face in ZBrush

[12] which is a digital sculpting tool that combines 3D/2.5D

modeling, texturing and painting. The created cats in-

clude Abyssinian cat, American Shorthair, British Short-

hair, Munchkin cat, Persian cat, Scottish Fold and Siamese

cat, as shown in Figure 3. Properties of them like size, coat,

energy, and shedding vary widely, but they still share sim-

ilar features. They are consistent with the above structure

with n = 1256 vertices and the same topology. In other

words, the samples are in dense correspondence, as shown

in Figure 4. The semantically corresponding vertices such

as the nose tip own the same index in every mesh.

We estimate a scaling factor so animals from different

backgrounds are in frontal view and comparable in size.

The structured 3D models provide semantically correspond-

ing points with the same index in the parametrization do-

main. To correspondent to the landmarks in cat images,

we manually select N landmarks of ears, eyes, nose, and

mouth, as shown in Figure 5.

2.2. 3D Morphable Model

The geometry of a face is defined by the shape matrix as

follow,

S =





x1 x2 · · · xn

y1 y2 · · · yn
z1 z2 · · · zn





3×n

, (1)

which contains the x, y, z coordinates of n = 1256 vertices.

Blanz et al. [6] propose the 3D Morphable Model to de-
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Figure 5. The illustration of 3D landmarks in the sample. We have

manually selected landmarks such as ears, eyes, nose, and mouth

corresponding to the 2D landmarks in images.

scribe 3D face space with PCA. With m samples, the new

shape of a face is formulated as:

S(α) = S̄ +

m−1
∑

i=1

αisi = S̄ +αs, (2)

where S̄ ∈ R
3×n is the mean shape, s = [s1, s2, ..., sm−1]

is the shape base and si ∈ R
3×n, α = [α1, α2, ..., αm−1]

is the corresponding shape parameter. In addition, σi ∈ R

obtained from the PCA process is the standard deviation of

αi and σ = [σ1, σ2, ..., σm−1] ∈ R
m−1.

Any 3D face model can be projected onto 2D image

space with weak perspective projection:

I = fPrR[S̄ +αs] + t2d, (3)

where I ∈ R
2×n is the projection leading to the 2D po-

sitions of 3D transformed vertices, f is the scale factor,

Pr =

[

1 0 0
0 1 0

]

is the orthographic projection matrix,

R = R(pitch, yaw, roll) is the 3 × 3 rotation matrix con-

structed from pitch, yaw, and roll rotation angles, and t2d is

the 2×n translation matrix. The collection of all the model

parameters is p = [f, pitch, yaw, roll, t2d,α] included pro-

jection parameters and shape parameter.

2.3. Matching the Morphable Model to Images

One of the core tasks of the parametric model is match-

ing the dense 3D Morphable Model to 2D face images. Co-

efficients of the 3D model and projection parameters can be

optimized by minimizing the difference between the pro-

jection of the generated 3D model and the input image. Uti-

lizing the exiting cat alignment database labeled with 2D

landmarks, we can estimate the parameter p by analysis-by-

synthesis. The N 2D landmarks in cat image are in accor-

dance with 3D landmarks in the mesh model, as shown in

Figure 6. We denote x and y coordinates of N semantically

meaningful landmarks in the image plane as a matrix U :

U =

[

u1 u2 · · · uN

v1 v2 · · · vN

]

. (4)

Figure 6. The illustration of 2D landmarks in the input image. We

have manually labeled landmarks such as ears, eyes, nose, and

mouth corresponding to the 3D landmarks in the mesh.

Since we aim to compare the difference between the 3D

model and cat image in the image plane, 3D landmarks are

needed to be projected from 3D space to image space. We

denote 3D landmarks as matrix S̃(α),

S̃(α) = S(α)[:, d], (5)

where d is the N-dim index vector indicating the indexes of

3D landmarks in mesh, thus S̃(α) is a 3×N landmark ma-

trix selected from S(α) which contains x, y, z coordinates.

The relationship between the 3D landmarks S̃(α) and its

projected 2D landmarks matrix U(p) can be described as

follow by making use of Equation 3,

U(p) = fPrRS̃(α) + t2d. (6)

We also denote the labeled 2D landmarks in the input

image as Ui(p),

Ui(p) =

[

ui1 ui2 · · · uiN

vi1 vi2 · · · viN

]

. (7)

Then we can use the following objective function to es-

timate parameter p,

L(p) = ||U − Ui||
2

F + λ

m−1
∑

j=1

(
αj

σj

)2. (8)

Matching 3D shape to an input image is an ill-posed

problem. The regularization appended here is to add infor-

mation in order to solve the ill-posed problem and to prevent

overfitting. λ is the parameter that controls the importance

of the regularization term.

By minimizing the difference between 2D labeled land-

marks in the input image and the projection of 3D land-

marks in the model, we can estimate the shape parameter

and projection parameters. We initialize the shape parame-

ter and projection parameters and optimize them alternately

in every iteration. In a loop, the algorithm generates a pro-

jection from the current parameters in p and update them.

The landmark matching process is summarized in Algo-

rithm 1.
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Algorithm 1 Matching the Morphable Model to Images

Require:

2D labeled landmarks in the input image;

Ensure:

parameters in p included shape parameters α and pro-

jection parameters f,R, t2d;

1: Initialize shape parameter α = 0;

2: Compute projection parameters [f,R, t2d] according to

the Gold Standard Algorithm [9];

3: Substitute projection parameters [f,R, t2d] from step 2

into Equation 8 and update shape parameter α;

4: Repeat step 2&3.

5: return parameters in p containing shape parameter α

and projection parameters [f,R, t2d];

3. Experiments

In this section, we present and analyze the morphable

model constructed. We also provide the results and some

details of matching the model to images.

3.1. CAFM

In this section, we show the representation power of

CAFM. According to Section 2.1, there are 50 cat-like ani-

mal samples. As shown in Equation 2, m is the number of

samples and here equals to 50, the new shape of a face can

be expressed as,

S(α) = S̄ +

49
∑

i=1

αisi = S̄ +αs. (9)

Given a set of shape parameters {α}Kj=1
that activate ev-

ery single principal component respectively, the new shape

of a face can be generated following Equation 9, as shown

in Figure 7. The expressiveness of the Morphable Model is

augmented by dividing faces into independent sub-spaces.

As we know, even from the same family, animals still

vary from size, coat, energy to shedding. We observe that

based on the average cat-like animal face S̄, the principal

components of the model catch the features of this family,

and the deformation is reasonable. Furthermore, the expres-

siveness of the Morphable Model is augmented, and results

show that the generated face is given vitality separated from

the samples.

3.2. Matching CAFM to Images

Given cat images and the Morphabel Model CAFM, we

can generate 3D reconstructions of input cat images with

projection parameters [f,R, t2d] and shape parameter α.

Our data set includes 10,000 cat images with 15 land-

marks. These in-the-wild cat face images without collect-

ing 3D face scans are near the frontal view. Exploiting the

Figure 7. The visualization of CAFM. Right: the average shape

of the cat-like animal face which is the S̄ in Equation 2. Left:

indicates how single principal component effects the results of the

model, αi is randomly selected from 0 to 1.

Figure 8. Cat-like animals from images. From left to right: the

input images with landmarks, the visualization of generated 3D

meshes, and the value of projection parameters.

methodology mentioned in Section 2.3, we are able to es-

timate the projection parameters [f,R, t2d] and shape pa-

rameter α, and then reconstruct its 3D model, see Figure 8.

Generated 3D face almost reproduce the input image, from

the position to its identity.

we construct a cat-like animal face dataset containing

10,000 pairs of 2D face images with 15 landmarks and 3D

face meshes with projection parameters.

4. Conclusion

In this study, we present the first 3D Morphable Model

for the animal face which is rarely touched ever. Also, we

construct a cat-like animal face dataset. Considering data

plays an essential role in deep learning, the work makes an

important contribution to the development of the field for

animals.
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