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Abstract

DeepNude, a deep generative software based on im-

age-to-image translation algorithm, excelling in undressing

photos of humans and producing realistic nude images. Al-

though the software was later purged from the Internet, im-

age translation algorithms such as CycleGAN, pix2pix, or

pix2pixHD can easily be applied by anyone to recreate a

new version of DeepNude. This work addresses the issue by

introducing a novel aspect of image translating algorithms,

namely the possibility of adversarially attacking these algo-

rithms. We modify the input images by the adversarial loss,

and thereby the edited images would not be counterfeited

easily by these algorithms. The proposed technique can pro-

vide a guideline to future research on defending personal

images from malicious use of image translation algorithms.

1. Introduction

While deep learning has led to many inspiring break-

throughs in recent years, this new technology can be easily

misguided, as well as misused. On the one hand, classi-

fication models are easily fooled by adversarial examples

that are only slightly perturbed versions of the regular data

[1, 2], leading to vulnerabilities in deep learning-based ap-

plications [3, 4]. On the other, the resolution and quality of

images produced by generative models have seen rapid im-

provement recently. This gives rise to immoral deep learn-

ing software [5], i.e., deepfake, which has already set mul-

tiple precedents of fake news [6, 7] and fake pornographic

images [8, 9], threatening privacy and security. One of the

most notorious deepfake applications, DeepNude [10], is

based on image-to-image translation technique. The func-

tion of DeepNude is simple: input an image and generate

the naked version of the image with a single click. conse-

quence is catastrophic: anyone could now find themselves

a victim of revenge porn. Although it was pulled offline

shortly after the attention [11], the source codes had been

released, and thus the same algorithm can be reproduced

easily to this date.

Facing the threat of deepfake algorithms, many, includ-

ing Facebook AI [12], have placed efforts into finding

forensics detection methods to detect deepfake contents.

However, these detection methods focused on face-swap-

ping techniques [13, 14], and thus are not suitable for Deep-

Nude, which affects different areas of an image (and not the

face). Furthermore, even if future detection methods catch

the footprints of DeepNude, it still causes harm to the in-

dividuals in the falsely generated images. This situation

necessitates the demand for a more direct intervention to

protect personal images from being easily manipulated by

deep generative algorithms. As deepfake models harm our

confidence in presenting our images online, and classifica-

tion models err upon adversarial images, we began to won-

der: can we obstruct the misuses of deep generative mod-

els by misguiding them through adversarial perturbations?

Following this idea, we tackle the problem with a new ap-

proach, utilizing adversarial attacks to create imperceptible

perturbations that would cause deep generative algorithms

to fail in generating the fake image in the first place.

Research on adversarial attacks was rarely applied on

generative functions [15], and to our best effort, our work

is the first to attack image translation GANs at inference

time. Naively, seeing that attacks on classification models

often utilizes the original model loss as the adversarial loss,

one might jump to the conclusion that adversarial attacks

on GANs should take the corresponding Discriminator into

account. However, as we shall see in Section 5.1, this ap-

proach is futile. In addition, we also find image transla-

tion GANs robust against inputs added with random noise.

Thus, achieving a successful adversarial attack on GANs is

a challenging problem.

Our goal for attacking GANs is clear: to cause an image

translation GAN model to fail in converting an image to the

model’s designed outcome. With extensive experiments, we

condense the term fail to two concrete and plausible defini-

tion: to output a similar or unmodified version of the input

image, or to output a broken and disfigured image. In the

first case, we introduce Nullifying Attack, which minimizes
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the distance between the adversarial output and the origi-

nal input, thus causing the model to output a similar im-

age of the original image. For the second case, we present

Distorting Attack, which maximizes the distance between

the adversarial output and the original output, causing the

model to generate an image distorted away from the orig-

inal photo-realistic image, resulting in a blurred and dis-

torted output, unrecognizable as a portrait picture and can

be easily identified as fake.

Furthermore, we also propose two novel metrics, i.e., the

similarity score to evaluate Nullifying Attack, and the dis-

tortion score to evaluate Distorting Attack. The similarity

score increases when attacking with a lower degree of ad-

versarial perturbation, as well as having the output closer

to the original input. The distortion score is higher when

the attack distorts the output more than it perturbs the in-

put. To our best knowledge, we are the first to evaluate the

adversarial attack on GAN numerically.

The contributions of this work include:

• Two types of adversarial attack on image-to-image

translation models, namely, the Nullifying Attack and

the Distorting Attack.

• Two novel metrics, namely, the similarity score ssim
and the distortion score sdist created for the evaluation

of the two types of attack methods respectively.

1

2. Related Work

Previous research on adversarial attacks had mainly fo-

cused on classification models [1, 2, 4, 16, 17] and paid

less attention to generative models [15, 18]. While VAE

appeared as a means of defense against adversarial attacks

in the prior work [19], Tabacof et al. [15] conjectured that

VAE could itself be vulnerable. They validated this point

by misguiding the model to reconstruct adversarial images

to selected images. Kos et al. [18] motivated the attack by

depicting the scenario of using VAEs as a compression de-

vice. Besides attacking the latent vector and the final out-

put, they also added a classifier to the latent vector to utilize

adversarial attacks on classification models.

Another line of studies utilized the generative model to

defend [20, 21] or enhance [22, 23] adversarial attacks on

classification models in previous literature. There are some

efforts to produce out-domain examples for GANs with

noise input [24] and to corrupt the training of image-to-im-

age deep generative models [25]. Compared with the above

research, we are the first to investigate and succeed in at-

tacking fully trained image-to-image deep generative mod-

els at inference time.

1source code provided in: https://github.com/jimmy-

academia/Adversarial-Attack-CycleGAN-and-pix2pix

3. Methodology

Our goal is to perform successful adversarial attacks on

image translation models. In this section, we first briefly

introduce our target models. We then introduce our attack-

ing framework, i.e., PGD attack. Finally, we describe the

adversarial losses to be implemented in our attack.

3.1. ImagetoImage Translations

GAN [26] is a deep generative algorithm consisting of

two deep learning networks, i.e., the Generator G and the

Discriminator D, contesting in the minimax game,

min
G

max
D

V (D,G) = Ex[logD(x)]

+ Ez[log(1−D(G(z)))].
(1)

Where given a training set x, the Discriminator learns to

differentiate between samples G(z) generated from noise z

and real samples x, while the Generator tries to fabricate

samples that are indistinguishable from the real. One of the

most well-known applications, image translation, learns a

mapping, i.e., x → y between two image domains x and y.

For paired datasets, pix2pix [27] and pix2pixHD [28]

learn the mapping between paired image by conditional

GAN, where by feeding in both x and y, the Discriminator

can ensure a pixel-to-pixel translation. This can be formally

written as:

min
G

max
D

V (D,G) = Ex,y[logD(x, y)]

+ Ex[log(1−D(x, G(x)))].
(2)

It is worth noting that pix2pixHD is an improved version of

the pix2pix, utilizing a coarse-to-fine scheme for its Genera-

tor by adding downsampling and upsampling layers, and us-

ing multiple scaled Discriminators to significantly improve

the image quality.

While it is costly to prepare paired datasets in practice,

CycleGAN [29] can work on unpaired datasets. It uses two

sets of GANs, in which two Generators transform the im-

ages from both domains, i.e., Gx : x → y and Gy : y → x,

and two Discriminator Dx and Dy learn to distinguish be-

tween x and GY (y) as well as between y and Gx(x). More-

over, by utilizing the cycle consistency loss

Lcyc(Gx, Gy) = Ex[||Gy(Gx(x))− x||1]

+ Ey[||Gx(Gy(y))− y||1]
(3)

CycleGAN can ensure transitivity, that is, image transferred

by both Generators consecutively would be similar to the

original image, and thereby it does not require the two do-

mains x and y to be paired.

3.2. Projected Gradient Descent Attack

Szegedy et al. [1] first brought to attention that deep

learning models can be misled with imperceptible pertur-

bations, now known as “adversarial attacks.” The current
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state-of-the-art attacking scheme is Projected Gradient De-

scent Attack (PGD) [17], which can be written as:

x
∗
0 = x+ noise,

x
∗
t+1 = clip(x∗

t + α · sign(∆xLadv(x
∗
t )))

(4)

where x is the original example, x∗
i is the adversarial ex-

ample at the ith iteration, ∆xLadv(x
∗
t ) is the gradient of

the adversarial loss function Ladv w.r.t x. α is the adjusting

rate, clip() denotes clipping x
∗
t+1 within the norm bound

(x + ǫ,x − ǫ) and the valid space (0, 1), and noise is ran-

dom noise within ǫ bound.

The adversarial loss function Ladv for classification

models is often constructed with the model’s original clas-

sification output [1, 2], which represents the models’ con-

fidence of classifying the input image to each label. The

adversarial attack process optimizes the adversarial input

x
∗ to increase the adversarial loss. Thus, we can cause the

model to decrease its confidence in the original (correct) an-

swer by pairing the output to the correct label, multiplied by

−1, or increase its confidence in some incorrect answer by

pairing the output to the incorrect label.

While Madry et al. [17] identified that PGD is the

strongest attack utilizing only gradients of adversarial loss,

we incorporate PGD as our attacking framework. Our pro-

cedures are the same as Equation 4 with Ladv replaced with

different adversarial loss alternatives.

3.3. Adversarial Losses

As attacks on classification models utilize the model

loss, we take the corresponding Discriminator into account,

creating

LD(x∗
t ) = −1 ·D(G(x∗

t )) (5)

where D, G is the corresponding Discriminator and Gener-

ator function in the target model. We expand on the idea of

using discriminative models as an adversarial loss function.

Since a trained Generator transfers images in the direction

x → y, the gradient of a Discriminator loss would possi-

bly be best if it points in the opposite direction y → x.

To this end, we train another Discriminator D′ with the ob-

jective to minimize D′(x) − D′(y), such that D′ exhibits

D′(x) < D′(y), creating the adversarial loss

LD′(x∗
t ) = D′(G(x∗

t )) (6)

As we shall see in Section 5.1, both attempts fail to pro-

vide satisfying results. However, we find that we are able to

influence the result by directly applying distance functions

to the Generator outcome. In particular, with certain dis-

tance function L, we define the adversarial loss function for

Nullifying Attack as,

LNull(x
∗
t ) = −1 · L(G(x∗

t )− x) (7)

and the loss function for Distorting Attack as,

LDist(x
∗
t ) = L(G(x∗

t )−G(x)) (8)

By applying distance functions, we can guide the output

towards a certain desired direction. In the case of Nullifying

Attack, the objective is to cause the image translation model

to output the original input. Thus Equation 7 is set so that

the distance between the adversarial output and the original

input would be minimized. Distorting Attack, on the other

hand, has the objective to push the adversarial output away

from the original output. Therefore, Equation 8 is set so the

distance between the two would be maximized.

4. Implementation

Following the original works [27, 28, 29], we use 9-

blocks ResNet in the Generators for CycleGAN, Unet for

pix2pix, and the combination Unet and further upsampling

and downsampling layers for pix2pixHD. 70 × 70 Patch-

GAN architecture is used in all the Discriminators. We

train by stochastic gradient descent (SGD) with Adam [30]

with batch size 1 and the learning rate set to 0.0002 for

the first 100 epochs then linearly decayed to 0 over the

next 100 epochs. For a consistent result, we evaluate the

proposed method on all three model types trained with

the CelebA-HQ dataset [31] and the corresponding mask

dataset CelebAMask-HQ [32]. Notice that we load the im-

age at 286× 286 than randomly cropping to 256× 256 for

CycleGAN and pix2pix, and loading at 572× 572 than ran-

domly cropping to 512 × 512 for pix2pixHD. For adver-

sarial attack procedures, the default norm bound ǫ, adjust

rate α, and attack iteration are 0.2, 0.01, and 100, respec-

tively. We use L(x) = x2 as the default distance function

for Equations 7 and 8. We randomly sample 90% of images

for training and 10% of images for testing, and the average

results from 50 runs are reported. 2 3

5. Experiments

In this section, we first present the quantitative analy-

sis of different attacking schemes. Then, we introduce two

2For CycleGAN, we select two groups of images out of the CelebA-HQ

dataset using “Smiling,” “HairColor,” “Bald” and “Eyeglasses” attributes

to create four image domain pairs and train model SMILE that translates

smiling to frowning images, model BLOND that translates black hair to

blond hair, model BALD that transforms a person with hair to a bald fig-

ure, and model GLASS that adds eyeglasses to the figures. The attributes

are selected to reflect manipulation of expression, replacement of an area,

removal of parts and addition of elements to the portrait.
3For pix2pix and pix2pixHD, we train model BLOND-PIX and model

BLOND-PIXHD having the same functionality as that of model BLOND.

Each model consists of a pair of models trained to perform “BlackHair”

→ “BlackHairMasked” and “BlondHairMasked” → “BlondHair” image

translation tasks. The intermediate masked images are created by replac-

ing the hair region with a white mask using the corresponding hair mask

images from CelebAMask-HQ.

55



Figure 1: An image from the CelebaHQ dataset selected as

the running example.

(a) SMILE (b) BLOND (c) BALD (d) GLASS

Figure 2: Resulting images from feeding the running exam-

ple to the CycleGAN models shows the models all work as

expected.

(a) BLOND-PIX (b) BLOND-PIXHD

Figure 3: Pix2pix and pix2pixHD results, including masked

outputs (left) and final results (right), showing the models

all work as expected

novel metrics, the similarity score and the distortion score,

based on the two attacks to give a concrete evaluation. Sen-

sitivity tests are also presented.

5.1. Quantitative Results

Taking Figure 1 as our running example, we present out-

puts from our CycleGAN models (model SMILE, BLOND,

BALD and GLASS) in Figure 2 as well as the intermediate

masked image and final output for model BLOND-PIX and

BLOND-PIXHD in Figure 3.

In Figure 4, we find that neither adding random noise

or using naive adversarial losses constructed with Discrim-

inators properly effect the outcome. On the one hand, us-

ing the original Discriminator (Equation 6) in adversarial

attack shows poor results because the Generator and the

Discriminator evolve simultaneously in Equation 5 and the

Discriminator only incrementally changes for the Generator

to follow [26]. Once training is complete, the gradient de-

rived from the Discriminator would supposedly only point

towards the subtle differences between real samples and

generated examples that are realistic. On the other hand,

(a) random (b) D (c) D′

Figure 4: Adversarial inputs and outputs for adding random

noise, attacking with LD and L′
D as adversarial loss on the

running example for model SMILE shows ineffective or poor

results.

reversely trained Discriminator (Equation 6) only focused

on the translated image attribute such that it doesn’t con-

sider the quality of the input and output images, and thus

the output image retains the smile but is also spotted with

an oil-like iridescent color.

In contrast, Nullifying Attack (Equation 7) and Distort-

ing Attack (Equation 8) both show great results in all our

models, as shown in Figures 5 and 6. Nullifying Attack con-

sistently causes the Generator to output an image similar to

the original input. Moreover, the perturbations in the ad-

versarial input are translated back to a smooth and photo-

realistic background most of the time. Distorting Attack

also successfully distorts the outcomes of CycleGAN mod-

els dramatically, and causes pix2pix and pix2pixHD to fail

in the second (masked image → image) translation.

Depending on different considerations, one might find

one of Nullifying Attack and Distorting Attack better than

the other. For example, if the goal is to maintain image

integrity such that the correct image may be delivered, one

can resort to Nullifying Attack. Alternatively, if the goal is to

detect the usage of image translation algorithms, Distorting

Attack could lead to more dramatic visual changes which

can be spotted easily.

5.2. Similarity and Distortion Scores

In previous research [15], result of adversarially attack-

ing VAEs were evaluated by plotting the distance measures

of adversarial perturbation (i.e., the distance between the

original input and the perturbed input) as well as the dis-

tance between the adversarial output and the target image.

Following this approach, we introduce the similarity score

for evaluating the performance of Nullifying Attack and the
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(a) SMILE (b) BLOND (c) BALD (d) GLASS

(e) BLOND-PIX (f) BLOND-PIXHD

Figure 5: Nullifying Attack results, with adversarial inputs on top, (intermediate result in the middle) and adversarial outputs

below. Different images are selected along with the running example to show the generalizability of the proposed method.

(a) SMILE (b) BLOND (c) BALD (d) GLASS

(e) BLOND-PIX (f) BLOND-PIXHD

Figure 6: Distorting Attack results, with adversarial inputs on top, (intermediate result in the middle) and adversarial outputs

below. Different images are selected along with the running example to show the generalizability of the proposed method.

distortion score for Distorting Attack. With x and y as the

original input and output, x∗ and y
∗ as the perturbed in-

put and output, and some distance function L, the similarity

score can be written as:
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MODEL TYPE

loss SMI. BLO. BALD GLA. PIX. HD

D 0 .15 .18 0 .09 .16

D’ 0 .08 .11 0 0 .1

Null. .02 .36 .41 .08 .27 .34

Dist. 0 .06 .06 0 0 .02

Table 1: The ssim values for different adversarial loss and

model type. Top score for each model is in bold font, in-

dicating Nullifying Attack as best method in this scenario.

SMI., BLO., BALD, GLA., PIX., HD are shorthands for model

SMILE, BLOND, BALD, GLASSES, BLOND-PIX, BLOND-

PIXHD.

ssim = max(0,
(logL(y − x))2

logL(y∗ − x) · logL(x∗ − x)
− 1) (9)

and the distortion score is:

sdist = max(0,
logL(y∗ − y)

logL(x∗ − x)
− 1) (10)

The scores ssim and sdist are formulated using the Tar-

get Distance (i.e. the distance between the adversarial out-

put and the original input or output, following Equations 7

and 8, and the Adversarial Distortion (i.e. the distance be-

tween adversarial perturbed image and the original image)

to highlight the objective of nullifying the image translation

effects or distorting the outcomes respectively, while also

taking account the objective of limiting the degree of pertur-

bation. It follows naturally whether to place each distance in

the numerator or denominator, such that the resulting ratio

would have larger values for better results. For the similar-

ity score ssim, it remains that we add a constant distance

L(y − x) (the original manipulation of the model) squared

to the numerator so as to arrive at a dimensionless quantity.

Since humans perceive change logarithmically [33], we

add log scales to the distances. Finally, we set up the rest

of Equations 9 and 10 so that attack that fails to keep it

closer to the original input than the original output would

find ssim = 0, whereas attacks that fail to distort the output

more than the perturbation made on the input would have

sdist = 0. Taking L(x) = x2 as our distance function

again, we find clear cut evidence that Nullifying Attack and

Distorting Attack are best methods of choice for each ob-

jective, as each attack results in the highest score for every

model in Tables 1 and 2 respectively.

5.3. Sensitivity Tests for Error Bound ǫ

Tabacof et al. [15] reported that for attacks on VAE, there

is a quasi-linear trade-off between the adversarial perturba-

MODEL TYPE

loss SMI. BLO. BALD GLA. PIX. HD

D 0 .03 .03 0 0 .09

D’ 0 .04 .07 .01 .05 .04

Null. 0 .13 .14 .02 .09 .12

Dist. .16 .16 .20 .14 .17 .15

Table 2: The sdist values for different attack methods and

models. Top value for each model is in bold font, indicating

Distorting Attack as best method in this scenario. Shorthand

notations follows Table 1

tion at the input and the intended adversarial results. How-

ever, this is not the case for image translation GANs, as

we find that adjusting the norm bound ǫ can lead to abrupt

changes. In Figures 7 and 8, we plot the Target Distance

against the Adversarial Distortion for 100 equally spaced

values of ǫ in [0, 0.5] for Nullifying Attack and Distorting

Attack on the CycleGAN models as a motivating example.

Nullifying Attack show different behaviour for different

trained models. We suspect that this is because the attack

process pulls the output towards the original image. For

some models (e.g. model SMILE), the original image trans-

lation manipulation is small, so a small adversarial pertur-

bation is enough to reach the original image, and further

adversarial overflows to larger distortion. Although there

is a larger distortion in the adversarial output with larget ǫ

value, visually accessing the output image finds that image

translation effect is still nullified and the quality of image

acceptable. We display in Figure 9 the output image of sev-

eral ǫ values for model SMILE, including ǫ = 0.495 which

corresponds to the maximum value in Figure 7a.

Distorting Attack, on the other hand, shows a more stable

trend which saturates towards large adversarial distortions.

This is because the attack process pushes the output away

from a starting point (the original output) and can continue

indefinitely. The saturation trend may arise from inherent

robustness of GANs.

6. Case Study

In this section, we first examine results from using dif-

ferent options of distance functions L. Then, we evaluate

whether Nullifying Attack results can withstand being ma-

nipulated again by the same translation model. Finally, we

validate the effectiveness of proposed methods for attacking

multiple models simultaneously with an ensemble attack.

6.1. Comparison of Distance Functions

We conduct extensive experiments on different distance

functions. Out of ℓ1, ℓ2, ℓ3, ℓ∞, as well as x2, |x3|, x4, |x5|,
we find L(x) = x2 to work the best. We report that Cy-
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(a) SMILE (b) BLOND

(c) BALD (d) GLASS

Figure 7: Plotting the Target Distance against Adversarial

Distortion for the four CycleGAN models shows that Nul-

lifying Attack is highly non-linear and the behaviour varies

greatly between different models.

(a) SMILE (b) BLOND

(c) BALD (d) GLASS

Figure 8: Plotting the Target Distance against Adversarial

Distortion for the four CycleGAN models for Distorting At-

tack shows a saturating effect.

cleGAN models are easier to attack than pix2pix and only

using ℓ1 distance fails for model BLOND (Figure 10). In the

case of pix2pix models, ℓ2, ℓ3, ℓ∞ norms are too weak to

effect the outcome (Figure 11), while the effect of perturba-

tion are too strong for n > 2 in xn (Figure 12). This result

supports our using x2 as the default distance function.

(a) ǫ = 0.04 (b) ǫ = 0.1 (c) ǫ = 0.2 (d) ǫ = 0.495

Figure 9: Example Nullifying Attack results on model

SMILE for various ǫ values.

Figure 10: Nullifying Attack result with ℓ1 on model BLOND

shows a green spot on the lower lip.

(a) with x
2 (b) with ℓ2 (c) with ℓ3 (d) with ℓ∞

Figure 11: Nullifying Attack results with different distance

functions on model BLOND-PIX. Compared with x2, using

ℓ2, ℓ3 and ℓ∞ fails to prevent the hair color from changing

(a) with x
2 (b) with x

3 (c) with x
4 (d) with x

5

Figure 12: Enlarged view of left cheek area for Nullify-

ing Attack inputs with different distance functions on model

BLOND-PIX. Compared with x2, using x3, x4 and x5 per-

turbs the image significantly more.

6.2. Repeated Inference for Nullifying Attack Re
sults

As Nullifying Attack results in an image similar to the

original input, we are curious to see whether the image

translation model could manipulate Nullifying Attack re-

sults.4 Figure 13 shows an example of passing the Nullify-

ing Attack result through model SMILE four times consecu-

tively. We find that the image does not convert to a frowning

4Distorting Attack disfigures the output, so feeding the output back to

the image translation model would not amount to much.
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(a) 1st iter. (b) 2nd iter.

(c) 3rd iter. (d) 4th iter.

Figure 13: Sequence of outputs resulting from repeatedly

feeding the outputs back through model SMILE starting with

the Nullifying Attack result on model SMILE. The image

resists being converted to a frowning image.

image, indicating that the result of Nullifying Attack main-

tains the original attributes even after multiple tries. We

notice that insignificant imperfections in one image transla-

tion process accumulate and cause the image to deteriorate

in image quality after several iterations.

6.3. Ensemble Attack

To deal with multiple possible deepfake algorithms, we

attempt to construct an ensemble attack with loss function

written as:

Lensemble(x
∗
t ) =

∑

m∈{models}

Lm(x∗
t ) (11)

where Lm are the loss functions, with G in each loss func-

tion replaced to Gm. Simply put, the same perturbation

steps for each model are now mixed together evenly to cre-

ate a common adversarial example. We investigate the ef-

fectiveness of ensemble attack for model SMILE, BLOND,

BALD, GLASS. In Figure 14, Nullifying Attack achieves

consistent result under the ensemble scheme. However, for

Distorting Attack, the results are not as distorted as those in

Figure 6. We believe this indicates that image translation

GANs inherently have similar latent structure, such that the

perturbation effect can be more coherent when the target

(a) Nullifying Attack

(b) Distorting Attack

Figure 14: Ensemble attack results. The adversarial input (1

on top) and result (1 or 4 at the bottom) for Nullifying Attack

and Distorting Attack. The four image results for Nullifying

Attack are all similar to each other, so we only place one.

is the same (i.e. the original image for the Nullifying At-

tack) but displays cancellation effect for Distorting Attack

because the distortion directions are different.

7. Conclusions

The emergence of deepfake applications is a serious ethi-

cal issue for research in deep generative algorithms. Past ef-

forts focused on the detection of deepfake generated content

but had not thought of the prospect of a more direct means

of intervention. In this work, we introduce a novel idea

of adversarially attacking image translation models, open-

ing up the doorway to disrupting current or future image

translation-based deepfake algorithms directly. We demon-

strate that with appropriate adversarial loss functions, one

could cause image translation models to be nonfunctional

as well as dysfunctional. We propose the similarity score

and distortion score for evaluating the two types of adver-

sarial attacks, confirming our observations in a more con-

crete sense. Although conducting various experiments, we

believe much work is still needed before we can attain a re-

liable way to protect our images from malicious use of deep

generative models. Future works may include investigation

on stronger attack methods that are not necessarily norm

bounded, (e.g., utilize deep generative algorithms [22, 23]

or be localized in a patch [34]), on the defensive end for im-

age translation models, and on black-box attack methods.
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