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Abstract

Object detection, as a fundamental research topic of

computer vision, is facing the challenges of video-related

tasks. Objects in videos tend to be blurred, occluded, or

out of focus more frequently. Existing works adopt feature

aggregation and enhancement to design video-based object

detectors. However, most of them do not consider the diver-

sity of object movements and the quality of aggregated con-

text features. Thus, they can not generate comparable re-

sults given blurred or crowded videos. In this paper, we pro-

pose an adaptive feature aggregation method for video ob-

ject detection to deal with these problems. We introduce an

adaptive quality-similarity weight, with a sparse and dense

temporal aggregation policy, into our model. Compared

with both image-based and video-based baselines on Im-

ageNet and VIRAT datasets, our work consistently demon-

strates better performance. Especially, our model improves

the average precision of person detection in VIRAT from

85.93% to 87.21%. Several demonstration videos of this

work are available1.

1. Introduction

Object detection has grown into a fundamental field in

the area of computer vision. It has been proved successful

in providing detailed analysis of objects in images for vari-

ous downstream tasks. With the emerging of video-related

tasks, object detection is also developing from image to

video. Compared with images, video frames bring along

the following challenges for directly applying traditional

image-based object detection models, as shown in Figure

2.

1. Motion blur caused by the fast-moving of objects.

2. Objects occluded by surroundings or other objects.

3. Objects out of focus due to camera movement.

1https://drive.google.com/drive/folders/

1U3o1m5tJlPGW1PNk4N_oEsZosezuxtmc?usp=sharing

Figure 1. Model architecture for video object detection with adap-

tive feature aggregation, details in Section 3

Video object detection models utilize feature aggregation

from context frames to overcome these challenges and get

better performance. Nevertheless, no existing method has

taken the diversity of object movements and the quality of

context features into account, to the best of our knowledge.

Almost all these methods use a fixed temporal window size

for all objects and treat all context frames equally. However,

in a complex scene with lots of objects, the optimal length

of the temporal window for feature aggregation varies. For

example, in a crowded scene where people are moving at

various speeds, the window size should be large for a person

temporarily occluded by the others. On the other hand, the
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Figure 2. Examples of motion blur and occlusion

model should only consider near frames for a fast-moving

person. Moreover, if the object is blurred, occluded, or out

of focus in a context frame, it should be assigned smaller

weights in that it contains less useful information.

We state the major contributions of our work as follows:

1. We propose an adaptive feature aggregation method

for video object detection, which combines weights of

both similarity and quality.

2. We design a dense and sparse cache strategy for tem-

poral feature aggregation, which further improve the

VOD performance.

3. Our model outperforms the baselines on both Ima-

geNet and VIRAT datasets. Especially, our model im-

proves the average precision of person detection in VI-

RAT from 85.93% to 87.21%.

The rest of this work is organized as follows: In Sec-

tion 2, we revisit the object detection models based on both

image and video, and analyze their problems. In Section

3, we propose our method as improvements upon the base-

line model. In Section 4, we provide experiment details and

analysis to support our method. In Section 5, we conclude

our work.

2. Background

Image based object detection (IOD) models such as

Faster R-CNN[9] and R-FCN[3] have demonstrated con-

vincing performance in video-related tasks such as multi-

ple object tracking[10], event detection[2, 12] and danger

recognition[13]. Given an image I as input, an IOD model

usually uses a feature network Nfeat to extract features as

f = Nfeat(I). Based on the extracted features, it intro-

duces a sub-network Ndet for detection, which generates a

label y and a bounding box b. This classical structure has

advanced the state of the arts in various challenges. How-

ever, for object detection in continuous videos, objects like

airplanes may get blurred due to their high-speed move-

ment. Meanwhile, in crowded scenes, objects might get

occluded by other moving objects frequently. Thus, IOD

models that only use a single frame usually generate unsta-

ble results or fails on these videos.

Directly applying IOD models frame by frame would

suffer from blur, occlusion, and out of focus problems,

which are common in videos. To deal with the continuous

scenario, many approaches have been developed for video

object detection (VOD) with feature propagation and en-

hancement modules. Zhu et al. proposed a flow-guided fea-

ture aggregation (FGFA) method[15] and multi-frame end-

to-end learning of features with cross-frame motion[14].

Xiao et al. introduced an aligned spatial-temporal mem-

ory network to model temporal appearance and motion

dynamics[11]. Hetang et al. also implemented an impres-

sion network to balance the efficiency and accuracy of

detection[6]. Different from previous works which based on

optical flow for alignments, Bertasius et al. implements De-

formable Convolution[1] and Xiao et al. resorts to Match-

Trans [11]. Generally, these models generate an alignment

matrix A(It, It′ ) to combine the context frames into a tar-

get frame. Given the feature extracted from target frame

ft = Nfeat(It) and a context frame ft′ = Nfeat(It′ ) with

alignment A(It, It′ ), a warp module W propagates ft′ to

f t
t
′ = W (ft′ , A(It, It′ )). Then the enhancement module

aggregates these warped features and generate final results.

Although these VOD models noticed the importance of

using contextual information, they did not design specific

strategies for different objects and their diverse require-

ments of temporal length for reference. Meanwhile, dur-

ing aggregation, they do not take the quality of contextual

features into consideration and may suffer from low-quality

contexts.

3. Methodology

We intend to integrate the baseline FGFA model with an

adaptive feature aggregation method to deal with the prob-

lems aforementioned.

3.1. Adaptive QualitySimilarity Weight

In the aggregation module, FGFA only focuses on the

similarity between warped features and features extracted

from the target frame. However, if the object on the target

frame is blurred or occluded, similar blurred or occluded

frames will be assigned higher weights due to the similar-

ity weight. On the other hand, the clear or complete frame

will get lower weights. To solve this, we propose a combi-

nation weight Wcomb which contains both similarity weight

Wsim and classification weight Wcls, as is shown in Equa-

tion 1-3. Wsim is directly calculated as the cosine distance

of the extracted features. Wcls is a pixel-wise weight where

W
(i,j)
cls equals to the maximum probability of the Region of

Interests (ROIs) which contain pixel (i, j), divided by the

number of these ROIs. And the probabilities of ROIs are
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generated by sub-network Ncls.

W t
′

→t
sim = exp (

ft · f
t
t
′

|ft| × |f t
t
′ |
) (1)

W t
′

→t
cls =

maxROIs Ncls(ft)

NROIs

(2)

W t
′

→t
comb = softmax (W t

′

→t
sim ×W t

′

→t
cls ) (3)

3.2. Dense and Sparse Temporal Aggregation

Within a complex scene such as crowded people, objects

need different lengths of contextual frames for reference.

For a small fast-moving object, its appearance may change

drastically, and warping from a far frame may cause errors.

Therefore, we just need to refer to close dense frames. On

the other hand, for continuously occluded or blurred ob-

jects, such as people talking behind a vehicle, we need to

resort to further frames for visibility. Based on this, we de-

sign a dense and sparse strategy for temporal feature aggre-

gation. In this method, two feature caches are stored with

different frame gaps and temporal window sizes. For the

dense one CD, we store close contextual frames one by one.

For the sparse one CS , we store further contextual frames

with a frame gap g. Given cached features and the adap-

tive weight matrix, we generate the aggregated feature of

the target frame as:

f t
agg =

∑

fi∈CD

W ti→t
combf

t
i +

∑

fj∈CS

W ti→t
combf

t
j (4)

3.3. Model Architecture

With the baseline and sub-modules illustrated above, the

structure of our model is shown in Figure 1. We store fea-

tures extracted by Nfeat in caches CS and CD and update

the classification weights Wcls. Then we warp the contex-

tual features to the target frame and calculate the similar-

ity weights Wsim. After that, we calculate combination

weights Wcomb with updated Wsim and Wcls, and gener-

ate f t
agg through aggregation. Finally, Ncls gives out the

classification probability and Nreg gives out the bounding

box locations based on the aggregated feature f t
agg .

4. Experiments

4.1. Datasets

We conduct experiments on a large image dataset

ImageNet2015[4] and a challenging surveillance dataset

VIRAT[8].

The ImageNet2015 is a large-scale dataset for object de-

tection and classification. It provides annotations of both

image dataset DET and video dataset VID. There are 200

object categories in DET and 30 categories in VID, which

is a subset of DET.

The VIRAT dataset is collected in natural scenes show-

ing people performing normal actions in standard contexts,

with uncontrolled, cluttered backgrounds. Different from

ImageNet2015, there are a large number of objects with dif-

ferent speeds and sizes within a single frame with frequent

occlusions.

4.2. Implementation Details

For the IOD baseline, we followed FGFA to adopt an

R-FCN with ResNet 101[5] pre-trained on ImageNet as the

backbone network.

For training, the entire network is fully differentiable for

an end to end optimization. Since we use the softmax func-

tion to normalize the adaptive weights for each pixel, we

can repeatedly use Ncls with frozen weights when calculat-

ing wcls. Due to the limit of GPU memory, we set the size

of both CD and CS as 2. As a result, we will randomly

aggregate two features from each cache in each iteration.

For inference, we have more GPU memory for larger

feature caches, which contain 2K features each. Given an

input video, we first initialize the feature caches with K

copies of f1. After that, we iteratively load images and up-

date the caches and weights matrix. Once the size of each

feature cache reaches 2K, we start to perform inference

based on the feature extracted from the target frame, feature

caches, and weights matrix. When loading the last frame

IN , we just make the inference of frame IN−k. Similar to

the initialization, we update feature caches and weights ma-

trix continuously with fN until the inference for all frames

is finished.

Given that the 30 object categories in VID are a subset

of 200 categories in DET, we can use both VID and these

30 object categories in the DET set for training. To be spe-

cific, in each epoch, we firstly train Nfeat, Ncls and Nreg

with DET data. Then we train the whole model on VID

where the Nfeat, Nreg and Ncls are initialized with weights

learned on DET. For ImageNet2015, we resize the shorter

size of all images to 600 pixels. The learning rate is set

as 2.5−4 and deteriorate to 2.5−5 after 6 epochs. For VI-

RAT, we resize the shorter size of all images to 860 pixels.

The learning rate is set as 1−3 and deteriorate to 5−4 after

5 epochs. Since many object categories of VIRAT over-

lap with the COCO[7] dataset, we pre-trained Nfeat, Ncls

and Nreg on COCO. Meanwhile, given that VIRAT con-

tains much more small objects, we changed the anchor size

from [8, 16, 32] to [2, 4, 8, 16, 32].

4.3. Performance Comparison

For evaluation, we compare our model with the IOD

baseline and FGFA on ImageNet. Results in Table 1 demon-

strate that our model outperforms the two baselines. Com-

pared with FGFA, the mean average precision at the thresh-

old of 0.5 (mAP@0.5) is improved from 77.1% to 77.9%.
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Figure 3. The performance of our model and FGFA on an example video clip. FGFA sometimes misclassifies the dog into a horse whereas

ours generates the correct results.

Figure 4. The performance of our model and FGFA on an exam-

ple video clip. Ours generates more accurate bounding box than

FGFA.

The improvements of adaptive weights and feature aggrega-

tion in our model achieve overall performance promotion.

Especially, as is shown in Figure 3 and 4, our model can

generate more reliable classification results and more pre-

cise bounding boxes.

Table 1. Comparison with Baseline Works on ImageNet

Model mAP@0.5

R-FCN 74.1%

FGFA 77.1%

Ours 77.9%

According to the results in Table 2, our model also out-

performs the other two baselines on VIRAT. Since VIRAT

only contains human actions and human-vehicle interac-

tions, we calculate the average precision (AP) of person and

vehicle separately in addition to mAP@0.5. The results in

Table 2 shows that our model improvements the AP of both

person and vehicle. The AP of person is significantly im-

proved from 85.93% to 87.21%. As is shown in Figure 5,

our model has considerable improvements when objects get

occluded.

Table 2. Comparison with Baseline Works on VIRAT

Model mAP@0.5 AP Person AP Vehicle

R-FCN 70.21% 0.8527 0.9092

FGFA 73.79% 0.8593 0.9111

Ours 74.27% 0.8721 0.9121

Figure 5. Our model successfully detects all three overlapped peo-

ple in the red box whereas FGFA only detects two.

5. Conclusion

In this paper, we propose an accurate video object de-

tection model with adaptive feature aggregation. Com-

pared with previous works, it calculates an adaptive quality-

similarity weight of context frames and integrates a dense

and sparse temporal aggregation policy. According to the

results on ImageNet and VIRAT, our model demonstrates

better performance in comparison with the baseline IOD

and FGFA models on both datasets. Especially, our model

improves the average precision of person detection in VI-

RAT from 85.93% to 87.21%. It shows that our improve-

ments can promote overall performance, with a boost in

specific categories. Since our model does not have special

requirements for the structure of Nfeat and Ndet, it can be

easily generalized to majority image-based object detection

models. Several aspects are left for future explorations. For

example, more precise alignment methods and long-term

feature aggregation scheme.
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