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Abstract

Autofocus (AF) is the process of moving the camera’s

lens such that desired scene content is in focus. AF for

single image capture is a well-studied research topic and

most modern cameras have hardware support that allows

quick lens movements to optimize image sharpness. How to

best perform AF for video is less clear. Conventional wis-

dom would suggest that each temporal frame should be as

sharp as possible. However, unlike single image capture,

the effects of the lens movement is visible in the captured

video. As a result, there are two parameters to consider in

AF for video: sharpness and lens movement. In this pa-

per, we show that users preferred videos with smooth lens

movement, even if it results in less overall sharpness. Based

on this observation, we propose two novel AF algorithms

for video that strive for both smooth lens movement and

sharp scene content. Specifically, we introduce (1) a bidi-

rectional long short-term memory (BLSTM) module trained

on smooth lens trajectories and (2) a simple weighted mov-

ing average (WMA) method that factors in prior lens mo-

tion. Both of these methods have demonstrated excellent

results in terms of reducing lens movements (up to 64% re-

duction) without greatly affecting the sharpness (less than

5.2% change in sharpness). Moreover, videos produced us-

ing our methods are more preferred by users over conven-

tional AF that aims only for maximizing sharpness.

1. Introduction

Autofocus (AF) algorithms adjust a camera’s optics to

focus on a region in a scene. Focusing can be performed

by either adjusting the lens aperture to change the depth of

field (DoF) or by moving the lens until scene content lies

within the DoF. AF is generally restricted to lens motion,

since changing the DoF alters the amount of out-of-focus

blur. On smartphone cameras, optics have fixed apertures

and moving the lens is the only means of AF.

When capturing a single image, the goal of AF is clear

– move the lens to maximize image sharpness for some de-

sired scene content and then capture the image. When cap-
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Figure 1: The left-hand plot shows lens motion and per-

frame sharpness for a conventional AF algorithm and its

corresponding smoothed lens movements. The right-hand

plot shows the preferences of 32 users for six videos using

conventional AF and those that have had their lens move-

ment smoothed.

turing a video (i.e., temporal images), the goal is less clear.

The challenge for video AF is often attributed to determin-

ing when and where to shift the focus while the scene con-

tent changes. The obvious solution for video AF – and one

used by most digital cameras – is to apply the single image

strategy to each incoming frame to maximize the overall

image sharpness [1, 4, 17]. However, this approach over-

looks the fact that the lens motion can be observed in the

captured video. Too much motion can result in undesired

‘lens wobble’.

Recent work by Abuolaim et al. [1] offered an inter-

esting finding regarding AF for video, lens motion, and

users’ preference. Their work created a new AF dataset

and research platform to emulate the AF system on cam-

eras. As part of their work, they evaluated several common

AF approaches for video that strived to maximize per-frame

sharpness. Abuolaim et al. [1] performed a user study to

determine what part of the scene users preferred to have in

focus — for example, a face region of interest (ROI) if a

face was present in the video. They found that user pref-

erence was not correlated to a particular ROI, but instead

correlated to the amount of lens motion in the overall out-

put video. Specifically, users preferred videos that had the

least amount of lens motion – irrespective of what ROI was

used. The only exception was when a face was present. For

such cases, users tolerated large lens movements to bring
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the face into focus. Moreover, less lens motion not only is

preferred by users but also reduces the power consumption

required to move the lens [26]. The finding in [1] serves

as our impetus to explore the idea of smooth lens motion in

more detail. Fig. 1 shows an example.

Contribution We propose two new AF methods for video

that incorporate online smoothing to reduce overall lens mo-

tion. To this end, we generate several lens trajectories for

video sequences using conventional algorithms that target

maximizing image sharpness. These lens trajectories are

then smoothed in an offline manner (i.e., smoothing filter

uses a window that considers prior and future lens posi-

tions) to produce videos with smoothed lens motion. We

perform a user study to re-confirm that these smoothed lens

trajectories are preferred over the videos targeting maxi-

mum image sharpness. These offline smoothed trajectories,

however, cannot be performed in a real AF system because

they require knowledge of where the lens will move in un-

seen frames. To perform online smoothing, we propose

two methods: (1) a supervised bidirectional long short-term

memory (BLSTM) module trained on smooth trajectories

and (2) an unsupervised weighted moving average (WMA)

method that considers scene sharpness and prior lens mo-

tion. We demonstrate good quantitative and qualitative re-

sults that show our methods can significantly reduce lens

motion (up to 64%) with a very small loss in sharpness (less

than 5.2%). We show that both algorithms produce outputs

more preferred than videos produced with no smoothing.

Users had a slightly higher preference for the WMA ap-

proach. This is an interesting finding as the WMA approach

is unsupervised and can be easily incorporated into existing

AF camera systems with little computational overhead.

2. Related Work

This section discusses existing work related to AF for

cameras, data smoothing, and recurrent neural networks

(RNN) for time series data.

AF for Cameras Contrast detection autofocus (CDAF) and

phase difference autofocus (PDAF) are the most common

techniques used in camera AF. CDAF uses image features,

such as gradient magnitude, to estimate the sharpness in an

ROI [3, 14]. CDAF approaches need to move the lens back

and forth to capture different images to determine which

direction to move the lens to maximize the sharpness [24].

PDAF is a newer technology that works at a hardware

level. PDAF computes the sharpness of an ROI by examin-

ing the image shift (phase difference) between left and right

sub-apertures of the primary lens. There are two common

designs for PDAF: (1) line sensor with half sub-mirror de-

sign used in older DSLR cameras [12, 19] and (2) on-sensor

dual-pixel technology used in recent DSLR and smartphone

cameras [13, 22]. PDAF allows an optimal lens position to

be computed with a single image capture. PDAF has sig-

nificantly improved cameras’ ability to perform autofocus

quickly and accurately. In this paper, we assume our cam-

era uses a dual-pixel sensor, and the optimal lens position

to maximize focus is known at each new input frame.

Prior work using both CDAF and PDAF have primarily

targeted single image capture. There has been significantly

less work on AF for video. Proposed methods for video

AF apply the single-image approach to each frame (e.g.,

see [1, 4, 17]). One of the major limitations for research tar-

geting AF for video had been the lack of access to a dataset

that provides a full focal stack at each time point. Recently,

Abuolaim et al. [1] introduced a 4D temporal focal stack

dataset composed of ten image sequences, each containing

50–90 focal stacks of 50 images. This work also introduced

a software platform that mimics the real AF implementation

with constraints such as lens motion timing with respect to

scene motion and frame capture. The data and AF platform

from [1] enable the work in this paper.

Data Smoothing Data smoothing is a prevalent technique

used in all areas of science. Readers are referred to [2, 6]

for thorough surveys. Data smoothing aims to reduce unde-

sired signal fluctuation while preserving higher-order mo-

ments of the original signal. The moving average (MA) is

the simplest digital smoothing method [7]. Despite its sim-

plicity, the MA is optimal for certain tasks, such as reducing

random fluctuation while retaining a sharp step response.

Savitzky-Golay (SG) is an established data smoothing

method [21]. This approach works by applying a least

squares polynomial fit to a moving window of data points

over time. The SG method has an advantage over the MA

as it better preserves features of the original signal, such as

peak height and width, which are usually attenuated by the

MA method. In our work, we use the output of SG method

as a proxy to the ground truth for training our BLSTM.

RNN for Time Series Data RNNs have been highly suc-

cessful in their ability to learn dependencies in time series

data by considering both the current input and the previous

hidden state. There are multiple types of RNNs, such as

the standard RNN, long short-term memory (LSTM) [11],

BLSTM [9, 23, 25], and gated recurrent unit (GRU) [5].

RNNs have been successfully applied to many time series

data tasks, including action recognition [18, 27], speech

recognition [8], and image captioning [15].

Standard RNNs are known to have difficulty in learning

long time dependencies [10]. Unlike RNNs, LSTMs have

shown capability of learning long and short time dependen-

cies. Nevertheless, both RNNs and LSTMs process inputs

in forward order and learn from previous hidden states only.

BLSTMs [9, 23, 25], therefore, were introduced to pro-

cess each training sequence forwards and backwards in two

separate LSTM nets in which they learn from previous as

well as next hidden states. In this paper, we examine using

BLSTM as an online AF smoothing method.
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Figure 2: This figure shows an example of the 4D temporal focal stack data from [1]. The highlighted frames indicate the

images that would be visible in the output video. The position of the highlighted images is achieved by moving the lens.

3. Smoothed Lens Motion for Video AF

The work in [1] found that users’ preference for an AF

system was correlated with the videos that had less lens mo-

tion and not what part of the scene was in focus (i.e., the

ROI used). The only exception was when a face entered a

scene. In this case, the ROI would be changed to the face,

which could potentially incur a large change in lens posi-

tion. This finding has led us to explore the idea proposed in

this paper – namely, how to smooth lens motion while also

attempting ROI sharpness. To this end, our aim is not to

come up with a new AF objective in regards to “what to fo-

cus on”, but rather an algorithm for temporal smoothing of

lens motion in AF videos based on existing focusing objec-

tives. In this section, we begin by describing the data used

in our experiments. Afterwards, our online smoothing algo-

rithms are described. This is followed by our quantitative

and qualitative results. Lastly, we present our user study to

determine which videos are preferred.

3.1. Video Focal Stack Dataset

We use the 4D temporal focal stack dataset and AF soft-

ware platform provided by [1]. This dataset contains ten

scenes (referred to as Scene 1–10), each consisting of 50–90

full focal stacks of 50 images each, 1 image for each possi-

ble lens positions. The AF platform is intended to emulate

an AF system on a smartphone. Timing for the AF system

is linked to an internal clock cycle, where movement of one

lens position requires a single clock cycle. Frame capture

is automatically triggered at each clock cycle. After each

clock step, the optimal lens position is provided from the

PDAF module depending on the AF ROI used. Motion in

the scene (i.e., advancement to the next focal stack) is per-

formed after ten clock cycles (i.e., a lens can move ten times

before moving to the next focal stack). Thus, a scene with

90 focal stacks will be simulated as 30 seconds of video, at

an effective frame rate of 30 frames per second, with 900

lens movements allowed. While this seems low, the mo-

tion of objects in the scenes is relatively slow (controlled

by linear actuators) and the resulting videos appear visually

consistent. The AF platform API provides four predefined

AF objectives in terms of the ROI used – namely, global

ROI targeting the whole image; 9 focus-points (9-FP) with

9 ROIs targeting the center of the frame; 51 focus-points

(51-FP) with 51 ROIs; and a face region (FR).

We generate ten videos for each objective, with the ex-

ception of face region, since only six scenes contain faces.

In total we have 36 videos (10 for each of the three objec-

tives and 6 for the face region). With each output video, the

API also provides meta-data, such as total number of lens

movements, lens positions and the optimal (sharpest) lens

positions based on PDAF at each clock cycle. Fig. 2 shows

an example of the 4D temporal focal stack data from [1]

with the frames used to generate the output video.

Fig. 3 shows a small sample output of the AF platform

relevant to our task. At each clock cycle, the optimal lens

position from the PDAF module is received, the current lens

position, and the change in lens position. Lens motion at

each clock cycle can take only one of three values: move

forward (+1), move backward (-1), or no movement (0).

Fig. 3-A shows output for the conventional method from

[1]. Fig. 3-B shows offline smoothing applied on lens mo-

tions (Section 3.2). The smoothing is applied as a moving

window (i.e., box filter) centered around the current lens po-

sition. Such offline filtering cannot be realized in a real cam-

era system as it requires knowledge of future lens positions.

This offline generated information will be used as part of

our training data. The goal for an online AF system, given

the past history of the lens positions and the current optimal

lens target from the PDAF module, is to decide whether to

move forward, backward, or not to move at each new clock

cycle. This is illustrated in Fig. 3-C (Section 3.3 and 3.4).

3.2. Lens Smooth Training Data

Before describing our BLSTM method, we describe the

offline data smoothing performed to compute the training

data. We apply the common offline smoothing method –

namely, Savitzky-Golay (SG). The SG method fits succes-

sive subsets of n adjacent lens positions xi, i = 1, ..., n with

a low-degree polynomial. The successive subsets can be

formed by sliding a time window of size l (odd number)
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Figure 3: This figure provides an overview of the data used for our AF algorithms. (A) shows the output of the AF platform

from [1]. At each clock cycle we have access to the optimal target lens position from the PDAF. We also have the current lens

position as well as the next lens movement. (B) shows the results of applying offline smoothing to the actual lens positions.

This is shown in red text. A plot of the lens position is also shown. (C) shows the problem of an online AF method. The

online method must predict the next lens move based on prior observations.

Figure 4: Savitzky-Golay method [21] applied on Scene

2 of the 9-FP objective. m is the polynomial degree and

l is the time window size. By varying m and l, different

smoothing trajectories can be applied.

and stride of 1. Then the smoothed lens position x∗
i can be

computed as follows:

x∗
i =

1

l

∑

j∈N(i)

Cj xj , (1)

where N(i) is the neighborhood lens positions centered

around xi of size l, Cj xj is the fitted value of xj with

a polynomial of degree m. Later, the final value of x∗
i is

rounded to the nearest integer to be a valid lens position.

There are two hyper-parameters m and l used to control

the strength of the smoothness applied. Fig. 4 demonstrates

the direct effect of applying SG on Scene 2 of the 9-FP ob-

jective. As shown in this figure, different smoothing tra-

jectories can be applied by varying m and l. For example,

lower polynomial degree m imposes less flexible smooth-

ing compered to the higher one. Similarly, larger window

size l imposes stronger smoothing compared to the smaller

one.

3.3. Online BLSTM

At each clock cycle i, the BLSTM module receives the

current lens position xi and the associated optimal lens

position oi coming from the PDAF module, as shown in

Fig. 3-C. BLSTM also observes the prior lens positions

for a certain time window of size l from i − l to i. The

goal is to predict the smoothed lens position x∗
i+1. Based

on the AF API implementation, a camera lens is allowed

to move only one step per clock cycle, |xi+1 − xi| =
{0, 1}, ∀i. Therefore, the problem can be presented as a

classification problem of three classes, Y = {−1, 0, 1}:
move backward, do not move, or move forward respec-

tively. Thus, given the observed window of lens positions

Xi = [(xi−l, oi−l), . . . , (xi, oi)] and its associated label yi,

the task is to predict f(Xi) such that x∗
i+1 = xi + f(Xi).

Proposed BLSTM Architecture Our model uses two

LSTM layers followed by a fully connected layer that out-

puts the vector s ∈ R
3 as shown in Fig. 5. The BLSTM

architecture allows the output layer to capture information

from past (backward) and future (forward) hidden states si-

multaneously. The vector s represents the scores of the three

classes {−1, 0, 1}. The vector s and forward/backward
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Figure 5: Our proposed BLSTM architecture of two LSTM layers followed by a fully connected layer. The term xi is the

current lens position and oi is the optimal lens position (i.e., where the ROI would be sharpest) at clock cycle i. The output

hidden states h’s of both forward and backward LSTMs are concatenated to form our compact representation of time series

data. The fully connected layer is added to output our score vector s that represents the scores of the three classes {−1, 0, 1}.

LSTMs are updated as follows:

−→
h

1
i+1 = LSTM1(

−→
h

1
i , (xi, oi);

−→
W1). (2)

−→
h

2
i+1 = LSTM2(

−→
h

2
i ,
−→
h

1
i+1;
−→
W2). (3)

←−
h

1
i−1 = LSTM1(

←−
h

1
i , (xi, oi);

←−
W1). (4)

←−
h

2
i−1 = LSTM2(

←−
h

2
i ,
←−
h

1
i+1;
←−
W2). (5)

s = Wfc[
←−
h

2
i−(l+1),

−→
h

2
i+1] + bfc, (6)

where LSTM1 and LSTM2 are the first and second LSTM

layers. The W terms denote the different weight matrices,

h’s are the hidden states of the LSTM units, and bfc is the

bias vector of the fully connected layer. Since our proposed

architecture is a bidirectional LSTM, we use right and left

arrows to indicate forward and backward passes.

We set the dimension for each LSTM unit to 32, which

results in a 64-dimensional fully connected layer at the top.

We fix the size of the input time window l to 20. We use

the Adam optimizer [16] to train our model with an initial

learning rate of 0.0005, which is decreased by half every

1000 epochs. We train our model with mini-batches of size

128 using cross-entropy loss as follows:

loss(Xi, yi) = − log

(

es[yi]

∑

j e
s[j]

)

. (7)

Cross-entropy loss is useful for classification problems

where it increases as the predicted probability diverges from

the actual label. During the training phase, we set the

dropout rate to 0.1 to avoid overfitting. All the models de-

scribed in the subsequent sections are implemented using

Python with Pytorch framework and trained with a NVIDIA

TITAN X GPU. In our experiments, it takes roughly 10 min-

utes to complete 1000 training epochs. We set the maximum

number of training epochs to 5000. An ablation study with

different LSTM architectures and settings is provided in the

supplemental materials.

3.4. Online WMA

The moving average (MA) method is one of the simplest

smoothing methods in the literature. The MA method re-

quires only input lens positions over time for smoothing and

does not utilize the target optimal lens position that comes

for free from the PDAF module. In this section, therefore,

we introduce our weighted moving average (WMA) method

that uses the target optimal lens position to assign a weight

wi to each lens position xi as follows:

x∗
i =

∑i

j=i−l wj xj
∑i

j=i−l wj

, (8)

wj = e−β(|xj−oj |), (9)

where β is our smoothing rate, and oj is the target optimal

lens position. The final value of x∗
i is rounded to the nearest

integer to be a valid lens position. The reason behind intro-

ducing the weight wi is to encourage lens movement with

a large difference from oj and suppress lens movements in

case of a small difference from the current position. Pa-

rameters β and l are the hyper-parameters used to control

smoothing strength.

Unlike the offline smoothing methods (i.e., SG and MA),

our online WMA uses only the prior data for x∗
i calculations

in which it is considered as an online smoothing method.

The offline smoothing methods cannot be performed in a

real AF system because they require knowledge of where

the lens will move in unseen frames.

4. Experiments and Discussions

In this section we present the quantitative and qualitative

results of our online smoothing methods: (1) a supervised

BLSTM model trained on offline generated smooth data us-

ing SG method and (2) an unsupervised WMA method.

151



Evaluation Criteria For our quantitative results, we intro-

duce four evaluation criteria:

• Accuracy: calculates the number of correctly classified

samples over the total number of samples. This accu-

racy is measured according to how similar our BLSTM

predictions are to the offline smoothed lens motion.

• Lens motion reduction: reports the percentage of lens

movements reduced after smoothing with respect to

the corresponding conventional method.

• Sharpness change: calculates the percentage of sharp-

ness change after smoothing with respect to the corre-

sponding conventional method. The sharpness of ROI

is calculated following the procedure in [1].

• Time delay: measures the time delay between the orig-

inal trajectory and our online smoothed trajectory by

applying the cross-correlation method in [20].

Data Preparation For the BLSTM method, we first apply

the offline SG smoothing for each of the 36 videos. We

set window size l = 141 and polynomial degree m = 3
in order to impose strong smoothing with some flexibility.

Next, we take the output smoothed lens positions to prepare

the data for the BLSTM model as described in Section 3.3.

We slide a time window of size 20 and stride of 1 to form

our BLSTM input samples Xi and their corresponding yi
for each video data. For the WMA method, there are two

hyper-parameters β and l used to control WMA’s smoothing

strength. We set β to 0.4 and l to 41 and empirically found

these values are suitable.

BLSTM Training Procedure We partition the data

based on independent scenes into training, validation,

and testing data. As described in Section 3.1, for

each ten scenes, there are three fixed ROI objectives

(global, 9-FP, and 51-FP) where sharpness is computed.

For those objectives we divide the scenes into pairs

{{1, 8}, {2, 7}, {3, 6}, {4, 10}, {5, 9}}, and then we per-

form cross-validation, where we take out-of-sample a pair

of scenes, one for validation and another for testing. Each

objective, thus, has five pairs and we need to train five mod-

els to report results for the ten scenes. For the last ob-

jective FR (face region), only six scenes contain faces and

for those we perform cross-validation by taking an out-of-

sample scene for validation and testing. For the FR ob-

jective, we need to train six models to report results for

the six scenes. The overall number of trained models is

3 × 5 + 1 × 6 = 21. We noticed that during training for

some pairs there are lens positions that do not exist in the

training set. For the network it is hard to predict for those

values that are beyond the range of lens position values in

the training set. To tackle this issue, we generate a video of

reasonable lens positions that covers all the possible values

0-50 and augment this video in the training set.

Objective Accuracy Objective Accuracy

Global 0.979 9-FP 0.922

FR 0.931 51-FP 0.837

Table 1: Average accuracy for each objective. Overall, aver-

age accuracy for all is mostly high, especially for the global

one, because it always has single ROI and usually involves

fewer lens movements.

Objective

Lens Motion Reduction

Offline Online

SG BLSTM WMA

Global 48.17% 33.38% 44.49 %

9-FP 52.32% 63.61% 50.17%

51-FP 49.54% 40.75% 46.03%

FR 25.53% 11.20% 35.03%

Objective

Sharpness Change

Offline Online

SG BLSTM WMA

Global -0.07% -0.47% -0.13%

9-FP -0.46% -2.25% -0.85%

51-FP -1.19% -5.17% -0.91%

FR -0.42% -1.55% -1.08%

Table 2: Lens motion reduction and its effect on sharpness

after applying smoothing methods for each objective. Com-

pared with conventional methods, our online BLSTM and

WMA have reduced lens motion significantly, with a very

small loss in sharpness.

Quantitative Results Table 1 shows BLSTM average ac-

curacy for each objective. Our BLSTM achieves an average

accuracy of 91.6%, and is especially good for the global

objective. This is because the global objective has a single

ROI and usually involves fewer lens movements. Compared

to other objectives, the 51-FP has slightly lower scene ac-

curacy due to the fact it has 51 ROIs and usually involves

more lens movements. In general, these results show that

our proposed BLSTM is able to learn smoothed lens motion

patterns and generalize for different scenes by testing on in-

dependent scenes that have never been seen by the network

during training. Recall that the WMA method is unsuper-

vised and we cannot evaluate its accuracy, because there is

no ground truth data.

The accuracy in Table 1 evaluates the model based on

the offline ground truth data. This accuracy metric suffers
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(a) Scene 6, 9-FP objective

e
e

(b) Scene 6, FR objective

Figure 6: A comparison of lens positions between the conventional (Conv.), BLSTM, and WMA. Offline SG is also shown as

this method is used to train the BLSTM model. The plot above presents the lens positions over time and the one below shows

the effect on sharpness value on the same timeline. The total number of lens movements for each method is shown in the

plot’s legend. BLSTM and WMA are able to suppress small lens fluctuations without substantially affecting the sharpness.

from cumulative error for online evaluations. For example,

constructing lens movement trajectory for the whole video

using offline evaluated samples results in propagating the

error of any misclassified sample. To that end, we measure

the trained BLSTM model’s ability to predict online stream

data of consecutive lens positions. This online BLSTM re-

ceives the optimal value oi coming from the PDAF module

at each clock cycle i where the lens position x∗
i is predicted

based on the previously observed sample Xi−1. In a re-

peated way and by receiving oi at a time, our online BLSTM

is able to build the lens movements for the whole video.

In Table 2, we report the lens motion reduction and

sharpness change of smoothing methods applied for differ-

ent AF objectives. Compared with the conventional AF, our

online BLSTM and WMA are able to suppress the small

lens fluctuations of the conventional lens positions while

maintaining reasonable sharpness values. Interestingly, by

looking at the overall performance, the unsupervised WMA

performs slightly better than the supervised BLTM in terms

of sharpness change. However, the WMA has a higher time

delay compared to the BLSTM, where the WMA method

achieved an average correlation of 0.88 and the BLSTM

achieved a high average correlation of 0.96.

Qualitative Results Fig. 6 illustrates the similarity between

different lens motion trajectories: the conventional, the on-

line BLSTM, and the offline SG method used for training,

and the online WMA. This figure also plots the correspond-

ing sharpness values over time. Fig. 6a shows a compar-

ison between the conventional, BLSTM, and SG methods

applied on the data from Scene 6 with the 9-FP objective.

Fig. 6b shows a comparison between the conventional and

WMA methods applied on the data from Scene 6 with the

FR objective. The total number of lens movements for each

method is shown in the plot’s legend. Our online BLSTM

produces lens motion trajectories quite similar to the of-

fline method trajectories used for training. Besides, both

BLSTM and WMA have significantly fewer lens move-

ments compared to the conventional method, in which fewer

lens movements are highly preferred, as found in [1]. See

supplemental materials for additional examples, including

videos and other visual comparisons.

5. User Study

A user study was conducted to investigate user prefer-

ence for different smoothing methods against the conven-

tional one. We conducted two user studies: (1) to determine

if users prefer offline smoothed video over the conventional

method, and (2) to determine if there is any particular pref-

erence for the different online smoothing methods.

For both studies, we defined scene number and objec-

tive as our independent variables, and user preference as our

dependent variable. A force-choice paired comparison ap-

proach was adopted that requires each participant to select

a single preferred video from a pair of videos. Both videos

in a given pair are taken from the same scene and objective,

but they have different methods.

For the first study, we picked six cases (scene with a cer-

tain objective) from the dataset (Section 3.1) to compare

conventional vs. ideal. This study is provided to demon-

strate the user preference for smoothed lens movements.

For the second study, we compared user preference of the

two online methods and the conventional method. We also

introduced another dummy online method that is always out

of focus with zero lens movements (maximum smoothness).

Specifically, five (5) scenes were used for the conven-

tional, BLSTM, WMA, and out-of-focus (OOF) videos.
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Figure 7: Results of our user study. In the first plot, all methods were preferred over the out-of-focus (OOF) method. Direct

comparisons, in the second and third plots, show that BLSTM and WMA were significantly preferred over the conventional.

The total number of paired comparisons for both studies is

6×
(

2
2

)

+ 5×
(

4
2

)

= 36.

For each video pair, eight opinions were collected from

32 participants (10 females and 22 males) ranging in age

from 18 to 50. We designed a graphical user interface (GUI)

that allows the user to view video pairs, one pair after the

other. This interface allows the participant to watch the two

videos in the current pair any number of times before mak-

ing a selection of the preferred one and proceeding to the

next pair. Each participant was shown nine pairs selected in

a random manner. The survey takes on average four min-

utes to complete. The experiments were performed indoors

with calibrated monitors and controlled lighting.

We aggregated user votes for each method into an overall

score that represents user preference by counting the num-

ber of times each method is preferred over another. This

overall score is represented as a normalized average user

preference. In addition, we calculated the 95% confidence

intervals for these results and represented them by the error

bars. For the first study, the right-hand plot in Fig. 1 clearly

shows the ideal smoothed methods were significantly pre-

ferred over the conventional one. The difference in the first

study was statistically significant (F = 49, p < 0.0002).

For the second study, the first plot in Fig. 7 demonstrates

the normalized average user preference for conventional

vs. BLSTM vs. WMA vs. OOF. The difference in the

second study was statistically significant (F = 38.416,

p < 0.000001). The first plot in Fig. 7 shows that all

methods were preferred over OOF, even though it had zero

lens movements, but it was the least preferred as it offered

out-of-focus video. Both BLSTM and WMA were pre-

ferred over the conventional method as they smooth and re-

duce lens movements without affecting the video sharpness.

WMA , with smaller error bar, was slightly preferred over

BLSTM. The first plot does not reflect the actual number of

times that BLSTM and WMA were selected over conven-

tional, because we take the aggregate of user votes and the

conventional method was selected many times over OOF.

To show comparisons of two methods independently, we

consider direct comparisons of conventional vs. BLSTM

and conventional vs. WMA and present them in the sec-

ond and third plots respectively. From the second and third

plots we can clearly see that our proposed online methods

(i.e., BLSTM and WMA) were significantly preferred.

6. Conclusion

This paper has proposed two methods for video AF that

perform online lens motion smoothing. Our method is mo-

tivated by a user study in prior work [1] that indicated users

prefer smooth videos. While this may seem an intuitive

finding, to the best of our knowledge, there is no literature

explicitly examining smooth lens motion for video AF. This

has motivated us to perform our own user study to show

that users do prefer processed versions of conventional al-

gorithms where the lens motion has been smoothed.

Based on this finding, we have proposed two algorithms

to perform online lens smoothing. The first is a BLTSM

learning-based method trained on smoothed lens trajecto-

ries. The second is a simple WMA. Both methods were sig-

nificantly preferred over conventional AF. Interestingly, the

simple WMA was slightly more preferred than the learning-

based method. This is encouraging as the WMA can be eas-

ily incorporated into existing AF hardware.
Our experiments were enabled by a recent AF dataset

and research platform [1]. This dataset, however, contains
only ten scenes with relatively low temporal sampling (yet
was still over 33,000 images). This encourages the camera
manufacturers to provide low-level hardware access to AF
features to enable more research on this topic.
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